首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha-Conotoxins, from cone snails, and alpha-neurotoxins, from snakes, are competitive inhibitors of nicotinic acetylcholine receptors (nAChRs) that have overlapping binding sites in the ACh binding pocket. These disulphide-rich peptides are used extensively as tools to localize and pharmacologically characterize specific nAChRs subtypes. Recently, a homology model based on the high-resolution structure of an ACh binding protein (AChBP) allowed the three-fingered alpha-neurotoxins to be docked onto the alpha7 nAChR. To investigate if alpha-conotoxins interact with the nAChR in a similar manner, we built homology models of human alpha7 and alpha3beta2 nAChRs, and performed docking simulations of alpha-conotoxins ImI, PnIB, PnIA and MII using the program GOLD. Docking revealed that alpha-conotoxins have a different mode of interaction compared with alpha-neurotoxins, with surprisingly few nAChR residues in common between their overlapping binding sites. These docking experiments show that ImI and PnIB bind to the ACh binding pocket via a small cavity located above the beta9/beta10 hairpin of the (+)alpha7 nAChR subunit. Interestingly, PnIB, PnIA and MII were found to bind in a similar location on alpha7 or alpha3beta2 receptors mostly through hydrophobic interactions, while ImI bound further from the ACh binding pocket, mostly through electrostatic interactions. These findings, which distinguish alpha-conotoxin and alpha-neurotoxin binding modes, have implications for the rational design of selective nAChR antagonists.  相似文献   

2.
Acetylcholine (ACh) hyperpolarized the rat diaphragm muscle fibers by 4.5 +/- 0.8 mV (K0.5 = = 36 +/- 6 nmol/l). The AC-induced hyperpolarization was blocked by d-tubocurarine and ouabain in nanomolar concentrations. This effect of ACh was not observed in cultured C2C12 muscle cells and in Xenopus oocytes with expressed embryonic mouse muscle nicotinic acetylcholine receptors (nAChR) or with neuronal alpha 4 beta 2 nAChR. In membrane preparations from the Torpedo californica electric organ, containing both nAChR and Na, K-ATPase, 10 nmol/l ouabain modulated the binding kinetics of the cholinergic ligand dansyl-C6-choline to the nAChR. These results suggest that in-sensitive alpha 2 isoform) and nAChR in a state with high affinity to Ach and d-tubocurarine may form a functional complex in which binding of ACh to nAchR is coupled to activation of the Na, K-ATPase.  相似文献   

3.
The alpha7 nicotinic acetylcholine receptor (nAChR) plays a key role in neural development and neurodegeneration. Here, we identify a novel, modulatory receptor ligand, a 14-amino acid peptide (AEFHRWSSYMVHWK) derived from the C-terminus of acetylcholinesterase (AChE). In three different in vitro preparations, this 'AChE-peptide' is bioactive in a ligand-specific and concentration-dependent manner. First, it modulates acutely the effect of acetylcholine (ACh) on Xenopus oocytes transfected with human alpha7, but not alpha4/beta2, nAChR. The action persists when intracellular calcium is chelated with BAPTA or when calcium is substituted with barium ions. This observation suggests that intracellular Ca(2+) signals do not mediate the interaction between the peptide and nAChR, but rather that the interaction is direct: however, the intervention of other mediators cannot be excluded. Secondly, in recordings from the CA1 region in guinea-pig hippocampal slices, AChE-peptide modulates synaptic plasticity in a alpha-bungarotoxin (alpha-BgTx)-sensitive manner. Thirdly, in organotypic cultures of rat hippocampus, long-term exposure to peptide attenuates neurite outgrowth: this chronic, functional effect is selectively blocked by the alpha7 nAChR antagonists, alpha-BgTx and methyllycaconitine, but not by the alpha4/beta2-preferring blocker dihydro-beta-ethroidine. A scrambled peptide variant, and the analogous peptide from butyrylcholinesterase, are ineffective in all three paradigms. The consequences of this novel modulation of the alpha7 nAChR may be activation of a trophic-toxic axis, of relevance to neurodegeneration.  相似文献   

4.
A new nicotinic acetylcholine receptor (nAChR) subunit, beta 4, was identified by screening a rat genomic library. In situ hybridization histochemistry revealed expression of the beta 4 gene in the medial habenula of adult rat brains. The primary structure of this subunit was deduced from a cDNA clone isolated from a PC12 cDNA library. Functional nAChRs were detected in Xenopus oocytes injected in pairwise combinations with in vitro synthesized RNAs encoding beta 4 and either the alpha 2, alpha 3, or alpha 4 subunit. Unlike the alpha 3 beta 2 receptor, the alpha 3 beta 4 receptor is not blocked by bungarotoxin 3.1, indicating that the beta subunit can affect the sensitivity of neuronal nAChRs to this toxin. These results extend the functional diversity of nicotinic receptors in the nervous system.  相似文献   

5.
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E(rev)) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E(rev) of nicotine-induced current as a function of extracellular Na(+) concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K(+)/Na(+) permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca(2+) concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na(+), which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.  相似文献   

6.
7.
The existence on glutamatergic nerve endings of nicotinic acetylcholine receptors (nAChRs) mediating enhancement of glutamate release has often been suggested but not demonstrated directly. Here, we study the effects of nAChR agonists on [3 H]-d-aspartate ([3 H]-d-ASP) release from synaptosomes superfused in conditions known to prevent indirect effects. Nicotinic receptor agonists, while unable to modify the basal [3 H]-d-ASP release from human neocortex or rat striatal synaptosomes, enhanced the Ca2+ -dependent exocytotic release evoked by K+ (12 mm) depolarization. Their rank order of potency were anatoxin-a > epibatidine > nicotine > ACh (+ atropine). The anatoxin-a effect, both in human and rat synaptosomes, was antagonized by mecamylamine, alpha-bungarotoxin or methyllycaconitine. The basal release of [3 H]ACh from human cortical synaptosomes was increased by (-)-nicotine (EC50 = 1.16 +/- 0.33 microm) or by ACh plus atropine (EC50 = 2.0 +/- 0.04 microm). The effect of ACh plus atropine was insensitive to alpha-bungarotoxin, methyllycaconitine or alpha-conotoxin MII, whereas it was totally antagonized by mecamylamine or dihydro-beta-erythroidine. To conclude, glutamatergic axon terminals in human neocortex and in rat striatum possess alpha7* nicotinic heteroreceptors mediating enhancement of glutamate release. Release-enhancing cholinergic autoreceptors in human neocortex are nAChRs with a pharmacological profile compatible with the alpha4beta2 subunit combination.  相似文献   

8.
9.
The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on alpha4beta2 and alpha4beta4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage-clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh-induced ion currents. These dual effects result in bell-shaped concentration-effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 microM: physostigmine on alpha4beta4 nicotinic receptors and amounts to 70% at 1 microM: ACh. The mechanism underlying the effects of physostigmine on alpha4beta4 ACh receptors has been investigated in detail. Potentiation of ACh-induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh-induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage-dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist (125)I-epibatidine from its recognition sites on alpha4beta4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two-site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh-induced ion currents. It is concluded that these acetylcholinesterase-inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on alpha4-containing nicotinic ACh receptors.  相似文献   

10.
The Xenopus laevis oocyte expression system was used to determine the activities of alpha-conotoxins EpI and the ribbon isomer of AuIB, on defined nicotinic acetylcholine receptors (nAChRs). In contrast to previous findings on intracardiac ganglion neurones, alpha-EpI showed no significant activity on oocyte-expressed alpha3beta4 and alpha3beta2 nAChRs but blocked the alpha7 nAChR with an IC50 value of 30 nM. A similar IC50 value (103 nM) was obtained on the alpha7/5HT3 chimeric receptor stably expressed in mammalian cells. Ribbon AuIB maintained its selectivity on oocyte-expressed alpha3beta4 receptors but unlike in native cells, where it was 10-fold more potent than native alpha-AuIB, had 25-fold lower activity. These results indicate that as yet unidentified factors influence alpha-conotoxin pharmacology at native versus oocyte-expressed nAChRs.  相似文献   

11.
Accumulation of the amyloid protein (Abeta) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism by which Abeta exerts its neurotoxic effect is largely unknown. It has been suggested that the peptide can bind to the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In this study, we examined the binding of Abeta1-42 to endogenous and recombinantly expressed alpha7nAChRs. Abeta1-42 did neither inhibit the specific binding of alpha7nAChR ligands to rat brain homogenate or slice preparations, nor did it influence the activity of alpha7nAChRs expressed in Xenopus oocytes. Similarly, Abeta1-42 did not compete for alpha-bungarotoxin-binding sites on SH-SY5Y cells stably expressing alpha7nAChRs. The effect of the Abeta1-42 on tau phosphorylation was also examined. Although Abeta1-42 altered tau phosphorylation in alpha7nAChR-transfected SH-SY5Y cells, the effect of the peptide was unrelated to alpha7nAChR expression or activity. Binding studies using surface plasmon resonance indicated that the majority of the Abeta bound to membrane lipid, rather than to a protein component. Fluorescence anisotropy experiments indicated that Abeta may disrupt membrane lipid structure or fluidity. We conclude that the effects of Abeta are unlikely to be mediated by direct binding to the alpha7nAChR. Instead, we speculate that Abeta may exert its effects by altering the packing of lipids within the plasma membrane, which could, in turn, influence the function of a variety of receptors and channels on the cell surface.  相似文献   

12.
Cigarette smoking and other forms of tobacco use deliver an array of pharmacologically active alkaloids, including nicotine and ultimately various metabolites of these substances. While nornicotine is a significant component in tobacco as well as a minor systemic metabolite of nicotine, nornicotine appears to be N-demethylated locally in the brain where it accumulates at relatively high levels after chronic nicotine administration. We have now examined the effects of nornicotine on specific combinations of neuronal nicotinic acetylcholine receptor (nAChR) subunits expressed in Xenopus oocytes and compared these responses to those evoked by acetylcholine and nicotine. Of the nAChR subtypes studied, we have found that alpha7 receptors are very responsive to nornicotine (EC50 approximately 17 micromol/L I(max) 50%, compared with acetylcholine (ACh)). nAChRs containing the ligand-binding domain of the alpha6 subunits (in the form of an alpha6/alpha3 chimera) are also strongly responsive to nornicotine (EC50 approximately 4 micromol/L I(max) 50%, compared with ACh). Alpha7-type nAChRs have been suggested to be potential therapeutic targets for Alzheimer's disease, schizophrenia and possibly other pathologies. nAChRs containing alpha6 subunits have been suggested to have a role in nicotine-evoked dopamine release. Thus, understanding the actions of nornicotine in the brain may have significance for both emerging therapeutics and the management of nicotine dependence.  相似文献   

13.
Recent work suggests that 5-iodo-A-85380, a radioiodinated analog of the 3-pyridyl ether A-85380, represents a promising imaging agent for non-invasive, in vivo studies of alphaAbeta2* nicotinic acetylcholine receptors (nAChRs; *denotes receptors containing the indicated subunits), because of its low non-specific binding, low in vivo toxicity and high selectivity for alpha4beta2* nAChRs. As an approach to elucidate nAChR subtypes expressed in striatum, we carried out competitive autoradiography in monkey and rat brain using 5-[125I]iodo-A-85380 ([125I]A-85380) and [125I]alpha-conotoxin MII, a ligand that binds with high affinity to alpha6* and alpha3* nAChRs, but not to alpha4beta2* nAChRs. Although A-85380 is reported to be selective for alpha4beta2* nAChRs, we observed that A-85380 completely inhibited [125I]alpha-conotoxin MII binding in rat striatum and that A-85380 blocked >90% of [125I] alpha-conotoxin MII sites in monkey caudate and putamen. These results suggest that A-85380 binds to non-alpha4beta2* nAChRs, including putative alpha6* nAChRs. Experiments to determine the percentage of [125I]A-85380 sites that contain alpha-conotoxin MII-sensitive (alpha6beta2*) nAChRs indicate that they represent about 10% of [125I]A-85380 sites in rodent striatum and about 30% of sites in monkey caudate and putamen. These data are important for identifying alterations in nicotinic receptor subtypes in Parkinson's disease and other basal ganglia disorders both in in vitro and in in vivo imaging studies.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. Alpha subunits, together with beta 2 and/or beta 4 subunits, form ligand-binding sites at alpha/beta subunit interfaces. Predatory marine snails of the genus Conus are a rich source of nAChR-targeted peptides. Using conserved features of the alpha-conotoxin signal sequence and 3'-untranslated sequence region, we have cloned a novel gene from the fish-eating snail, Conus bullatus; the gene codes for a previously unreported alpha-conotoxin with unusual 4/4 spacing of amino acids in the two disulfide loops. Chemical synthesis of the predicted mature toxin was performed. The resulting peptide, alpha-conotoxin BuIA, was tested on cloned nAChRs expressed in Xenopus oocytes. The peptide potently blocks numerous rat nAChR subtypes, with highest potency for alpha 3- and chimeric alpha 6-containing nAChRs; BuIA blocks alpha 6/alpha 3 beta 2 nAChRs with a 40,000-fold lower IC(50) than alpha 4 beta 2 nAChRs. The kinetics of toxin unblock are dependent on the beta subunit. nAChRs with a beta 4 subunit have very slow off-times, compared with the corresponding beta 2 subunit-containing nAChR. In each instance, rat alpha x beta 4 may be distinguished from rat alpha x beta 2 by the large difference in time to recover from toxin block. Similar results are obtained when comparing mouse alpha 3 beta 2 to mouse alpha 3 beta 4, and human alpha 3 beta2 to human alpha 3 beta 4, indicating that the beta subunit dependence extends across species. Thus, alpha-conotoxin BuIA also represents a novel probe for distinguishing between beta 2- and beta 4-containing nAChRs.  相似文献   

15.
The alpha9 and alpha10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of alpha9 and alpha10 overlaps with that of alpha7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin alpha-conotoxin PeIA that discriminates between alpha9alpha10 and alpha7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. Alpha-conotoxin PeIA displayed a 260-fold higher selectivity for alpha-bungarotoxin-sensitive alpha9alpha10 nAChRs compared with alpha-bungarotoxin-sensitive alpha7 receptors. The IC50 of the toxin was 6.9 +/- 0.5 nM and 4.4 +/- 0.5 nM for recombinant alpha9alpha10 and wild-type hair cell nAChRs, respectively. Alpha-conotoxin PeIA bears high resemblance to alpha-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither alpha-conotoxin MII nor alpha-conotoxin GIC at concentrations of 10 microM blocked acetylcholine responses elicited in Xenopus oocytes injected with the alpha9 and alpha10 subunits. Among neuronal non-alpha-bungarotoxin-sensitive receptors, alpha-conotoxin PeIA was also active at alpha3beta2 receptors and chimeric alpha6/alpha3beta2beta3 receptors. Alpha-conotoxin PeIA represents a novel probe to differentiate responses mediated either through alpha9alpha10 or alpha7 nAChRs in those tissues where both receptors are expressed.  相似文献   

16.
The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the alpha-subunit of nicotinic acetylcholine receptors and in particular the homomeric alpha7 nicotinic receptor. We report the isolation and characterization of an alpha-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the alpha7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the alpha3beta2 nAChR indicating that alpha-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of alpha3beta2 nAChRs. alpha-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first alpha-conotoxin with higher affinity for the closely related receptor subtypes, alpha3beta2 versus alpha6beta2, and selectively blocks these two subtypes when compared with alpha2beta2, alpha4beta2, and alpha1beta1deltaepsilon nAChRs.  相似文献   

17.
18.
Different snake venom neurotoxins block distinct subtypes of nicotinic acetylcholine receptors (nAChR). Short-chain alpha-neurotoxins preferentially inhibit muscle-type nAChRs, whereas long-chain alpha-neurotoxins block both muscle-type and alpha7 homooligomeric neuronal nAChRs. An additional disulfide in the central loop of alpha- and kappa-neurotoxins is essential for their action on the alpha7 and alpha3beta2 nAChRs, respectively. Design of novel toxins may help to better understand their subtype specificity. To address this problem, two chimeric toxins were produced by bacterial expression, a short-chain neurotoxin II Naja oxiana with the grafted disulfide-containing loop from long-chain neurotoxin I from N. oxiana, while a second chimera contained an additional A29K mutation, the most pronounced difference in the central loop tip between long-chain alpha-neurotoxins and kappa-neurotoxins. The correct folding and structural stability for both chimeras were shown by (1)H and (1)H-(15)N NMR spectroscopy. Electrophysiology experiments on the nAChRs expressed in Xenopus oocytes revealed that the first chimera and neurotoxin I blockalpha7 nAChRs with similar potency (IC(50) 6.1 and 34 nM, respectively). Therefore, the disulfide-confined loop endows neurotoxin II with full activity of long-chain alpha-neurotoxin and the C-terminal tail in neurotoxin I is not essential for binding. The A29K mutation of the chimera considerably diminished the affinity for alpha7 nAChR (IC(50) 126 nM) but did not convey activity at alpha3beta2 nAChRs. Docking of both chimeras toalpha7 andalpha3beta2 nAChRs was possible, but complexes with the latter were not stable at molecular dynamics simulations. Apparently, some other residues and dimeric organization of kappa-neurotoxins underlie their selectivity for alpha3beta2 nAChRs.  相似文献   

19.
A motif containing five conserved amino acids (RXPXTH(X)14P) was detected in 111 proteins, including 82 nicotinic acetylcholine receptor (nAChR) subunits and 20 catalases. To explore possible functional roles of this motif in nAChRs two approaches were used: first, the motif sequences in nAChR subunits and catalases were analysed and compared; and, second, deletions in the rat alpha2 and beta4 nAChR subunits expressed in Xenopus oocytes were analysed. Compared to the three-dimensional structure of bovine hepatic catalase, structural coincidences were found in the motif of catalases and nAChRs. On the other hand, partial deletions of the motif in the alpha2 or beta4 subunits and injection of the mutants into oocytes was followed by a very weak expression of functional nAChRs; oocytes injected with alpha2 and beta4 subunits in which the entire motif had been deleted failed to elicit any acetylcholine currents. The results suggest that the motif may play a role in the activation of nAChRs.  相似文献   

20.
The mammalian sperm acrosome reaction (AR) is essential to fertilization and is believed to be initiated in vivo by ZP3, a glycoprotein component of the egg zona pellucida (ZP). Recently, we reported the results of antagonist studies suggesting that a nicotinic acetylcholine receptor (nAChR) containing an alpha7 subunit (alpha7nAChR) plays a role in the human sperm AR initiated by recombinant human ZP3 or by acetylcholine (ACh). Here, we show that ACh can initiate the mouse sperm AR and that antagonists of the nAChR inhibit the AR initiated by ACh or by ZP obtained from ovarian oocytes (isolated heat-solubilized mouse ZP). Preincubation with three antagonists of the nAChR, alpha-bungarotoxin (100 nM), alpha-conotoxin IMI (100 nM), and methyllycaconitine (100 nM), significantly blocked AR initiation by ACh or by isolated heat-solubilized mouse ZP (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号