首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of D-galactosamine on protein N-glycosylation was studied in rat hepatocyte primary cultures for alpha 1-antitrypsin (three complex type oligosaccharide chains) and alpha 1-acid glycoprotein (six complex type oligosaccharide chains). D-Galactosamine at a concentration of 4 mM inhibited partially de novo N-glycosylation leading to the formation of alpha 1-antitrypsin lacking one to two and of alpha 1-acid glycoprotein lacking one to five of its carbohydrate side chains. In addition D-galactosamine interfered with oligosaccharide processing, leading to the formation of some carbohydrate side chains remaining in an endoglucosaminidase H sensitive, i.e., not completely processed, form. D-Galactosamine impaired the secretion of alpha 1-antitrypsin and of alpha 1-acid glycoprotein but did not inhibit the secretion of the unglycosylated albumin. The inhibitory effect of D-galactosamine on de novo glycosylation as well as on oligosaccharide processing lasted for at least 24 h after it had been removed from the cells. D-Galactosamine impaired the glycosylation of alpha 1-antitrypsin only in hepatocytes, but not in human monocytes. Furthermore, D-galactosamine did not impair the N- and O-glycosylation of interleukin-6 in human monocytes and in MRC 5 fibroblasts. The results indicate that the effect of D-galactosamine on protein glycosylation is restricted to D-galactosamine metabolizing hepatocytes and is not exerted by the drug itself but by its metabolites.  相似文献   

3.
Experimental inflammation in rats led to a sevenfold increase in serum levels of alpha 1 acute-phase globulin. This increase is correlated with elevated levels of translatable mRNA for alpha 1 acute-phase globulin in the liver. Biosynthesis and secretion of alpha 1 acute-phase globulin were studied in rat hepatocyte primary cultures. An intracellular form of alpha 1 acute-phase globulin with an apparent relative molecular mass of 63 500 and a secreted form of 68 000 were found. The intracellular form of alpha 1 acute-phase globulin could be deglycosylated by endoglucosaminidase H treatment indicating that its oligosaccharide chains were of the high-mannose type. The secreted form of alpha 1 acute-phase globulin was not sensitive to endoglucosaminidase H, but was susceptible to the action of sialidase reflecting carbohydrate side-chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the high-mannose and the complex type alpha 1 acute-phase globulin. In the hepatocyte medium newly synthesized alpha 1 acute-phase globulin was detected 30 min after the pulse. Unglycosylated alpha 1 acute-phase globulin was found in the cells as well as in the medium when the transfer of oligosaccharide chains onto the polypeptide chains was blocked by tunicamycin. Tunicamycin led to a marked delay in alpha 1 acute-phase globulin secretion.  相似文献   

4.
The biosynthesis of the proteinase inhibitor alpha 1-antitrypsin has been studied in rat hepatocyte primary cultures. Newly synthesized alpha 1-antitrypsin was found in hepatocytes as a glycoprotein of an apparent molecular weight of 49,000 carrying oligosaccharide side chains of the high mannose type. In the hepatocyte medium a secreted alpha 1-antitrypsin of an apparent molecular weight of 54,000 could be identified as a glycoprotein with carbohydrate chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the two forms of alpha 1-antitrypsin. When the hepatocytes were treated with swainsonine, an intracellular form of alpha 1-antitrypsin with an apparent molecular weight of 49,000 indistinguishable from that of control cells was found. However, the alpha 1-antitrypsin secreted from swainsonine-treated hepatocytes was different from that present in control media. It was characterized by a lower apparent molecular weight (51,000), a higher amount of [3H]mannose incorporation, half as much incorporation of [3H]galactose, and the same amount of [3H]fucose incorporation compared to alpha 1-antitrypsin of control media. In contrast to the 54,000 complex type alpha 1-antitrypsin from control media the 51,000 alpha 1-antitrypsin from the medium of swainsonine-treated cells was found to be susceptible to the action of endoglucosaminidase H, even when fucose was attached to the proximal GlcNAc residue. alpha 1-Antitrypsin secreted from swainsonine-treated cells combines features usually associated with either high mannose or complex type oligosaccharides and therefore represents a hybrid structure. In spite of its effect on the carbohydrate part of alpha 1-antitrypsin swainsonine did not impair the secretion of the incompletely processed glycoprotein.  相似文献   

5.
The alpha and beta subunits of meprins, mammalian zinc metalloendopeptidases, are extensively glycosylated; approximately 25% of the total molecular mass of the subunits is carbohydrate. The aim of this study was to investigate the roles of the N-linked oligosaccharides on the secreted form of mouse meprin A. Recombinant meprin alpha and mutants in which one of the 10 potential Asn glycosylation sites was mutated to Gln were all secreted and sorted exclusively into the apical medium of polarized Madin-Darby canine kidney cells, indicating that no specific N-linked oligosaccharide acts as a determinant for apical targeting of meprin alpha. Several of the mutant proteins had decreased enzymatic activity using a bradykinin analog as substrate, and deglycosylation of the wild-type protein resulted in loss of 75-100% activity. Some of the mutants were also more sensitive to heat inactivation. In studies with agents that inhibit glycosylation processes in vivo, tunicamycin markedly decreased secretion of meprin, whereas castanospermine and swainsonine had little effect on secretion, sorting, or enzymatic properties of meprin. When all the potential glycosylation sites on a truncated form of meprin alpha (alpha-(1-445)) were mutated, the protein was not secreted into the medium, but was retained within the cells even after 10 h. These results indicate that there is no one specific glycosylation site or type of oligosaccharide (high mannose- or complex-type) that determines apical sorting, but that core N-linked carbohydrates are required for optimal enzymatic activity and for secretion of meprin alpha.  相似文献   

6.
The biosynthesis of thrombospondin, a glycoprotein first described in platelets, has been studied in human endothelial cells. This glycoprotein has a molecular mass of 450 kDa. It is secreted and incorporated into the extracellular matrix of several cell types in culture. Pulse-chase experiments with [3H]leucine were performed and the synthesis and secretion of the glycoprotein was studied by immunoprecipitation and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results of these experiments show that the three subunits of thrombospondin are identical in molecular mass. During synthesis there is a small but significant increase in molecular mass within 20 min after pulse labeling. The early form of thrombospondin is sensitive to endoglucosaminidase H treatment, indicating that a transformation of the oligosaccharide structures from 'high-mannose' to 'complex' structures takes place. Within 60 min after synthesis only the mature form of the glycoprotein is secreted into the medium. In the presence of tunicamycin, an inhibitor of N-glycosylation, there is a reduction in molecular mass of the subunit from 165 kDa to 155 kDa. Pulse-chase experiments in the presence of tunicamycin supported the conclusion that the carbohydrate part is processed during biosynthesis. Inhibition of glycosylation had a pronounced effect on the secretion of thrombospondin. The decreased occurrence of thrombospondin in the culture medium seemed to be due to a high intracellular degradation rate of unglycosylated thrombospondin. Characterization of the glycopeptide structures of thrombospondin metabolically labeled with [3H]mannose by Bio-Gel P-4 and concanavalin-A-Sepharose column chromatography revealed that the oligosaccharide structures of the cellular and secreted forms of thrombospondin differ in their composition.  相似文献   

7.
The regulation of adipose tissue lipoprotein lipase (LPL) by feeding and fasting occurs through post-translational changes in the LPL protein. In addition, LPL activity and secretion are decreased when N-linked glycosylation is inhibited. To better understand the role of oligosaccharide processing in the development of LPL activity and in LPL secretion, primary cultures of rat adipocytes were treated with inhibitors of oligosaccharide processing. LPL catalytic activity from the heparin-releasable fraction of adipocytes was inhibited by more than 70%, with similar decreases in LPL mass, when cells were cultured for 24 h in the presence of either tunicamycin or castanospermine. On the other hand, deoxymannojirimycin (DMJ) and swainsonine had no effect on LPL activity. LPL secretion was examined after pulse-labeling cells with [35S]methionine. The appearance of 35S-labeled LPL in the medium was blocked by treatment of cells with tunicamycin and castanospermine, whereas secretion was not affected by DMJ or swainsonine. To examine the effect of oligosaccharide processing on LPL intracellular degradation, adipocytes were treated with tunicamycin, castanospermine, and DMJ and then pulse-labeled with [35S]methionine, followed by a chase with unlabeled methionine for 120 min. The unglycosylated [35S]LPL that was synthesized in the presence of tunicamycin demonstrated essentially no intracellular degradation. In the presence of castanospermine and DMJ, the half-life of newly synthesized LPL was increased to 81 and 113 min, as compared to 65 min in control cells. Thus, castanospermine-treated adipocytes demonstrated a decrease in LPL activity and secretion, suggesting that the glucosidase-mediated cleavage of terminal glucose residues from oligosaccharides is a critical step in LPL maturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Several studies have suggested that insulin and glucose increase adipose tissue lipoprotein lipase (LPL). To study the mechanism of the glucose-induced stimulation of LPL, the effects of glucose and glycosylation were examined in primary rat adipocyte cultures. In cells cultured in the presence of 1 mg/ml glucose, a 55-kDa LPL protein was synthesized and secreted into the medium, whereas cells cultured in glucose-free medium synthesized a 49-kDa form of LPL which was not secreted. The treatment of the mature 55-kDa form of LPL with peptide:N-glycosidase-F resulted in the formation of a 49-kDa form of LPL. When cells were cultured in the presence of tunicamycin, a 49-kDa form of LPL was synthesized by the cells but was not secreted. In addition, LPL activity was reduced by 90% when glycosylation was blocked by either tunicamycin or glucose deprivation. LPL synthetic rate was examined in cells cultured in a spectrum of glucose concentrations. LPL synthetic rate increased directly with medium glucose concentration and was decreased 80% in the absence of glucose compared to the synthetic rate in the presence of 1 mg/ml glucose. In addition, LPL synthetic rate in the presence of insulin was approximately 200% of the synthetic rate in untreated control cells at all glucose concentrations and even in the absence of glucose. In spite of the effect of glucose on LPL synthetic rate, glucose had no effect on the level of LPL mRNA. In contrast, the mRNA for the 78-kDa glucose-regulated protein (GRP78) was increased in adipocytes cultured in glucose-free medium. In summary, glucose was essential for glycosylation of LPL, and glycosylation was essential for LPL catalytic activity and secretion. In addition, glucose stimulated LPL synthetic rate and potentiated the stimulatory effects of insulin, but had no specific effect on LPL mRNA. Whereas insulin stimulates LPL by increasing the level of LPL mRNA, glucose stimulates LPL translation and post-translational processing.  相似文献   

9.
Rat hepatic lipase is a glycoprotein bearing two N-linked oligosaccharide chains. The importance of glycosylation in the secretion of hepatic lipase was studied using freshly isolated rat hepatocytes. Various inhibitors of oligosaccharide synthesis and processing were used at concentrations that selectively interfere with protein glycosylation. Secretion of hepatic lipase activity was abolished by tunicamycin, castanospermine, and N-methyldeoxynojirimycin. No evidence was found by ELISA or Western blotting for secretion of inactive protein. Inhibition of secretion became apparent after a 30-min lag, corresponding to the time of intracellular transport of pre-existing protein. Simultaneously, intracellular hepatic lipase activity ws depleted. Secretion of hepatic lipase protein and activity was not affected by deoxymannojirimycin and swainsonine. Upon SDS-polyacrylamide gel electrophoresis, hepatic lipase secretion by deoxymannojirimycin- or swainsonine-treated cells showed an apparent Mr of 53 kDa and 55 kDa, respectively, which was distinct from hepatic lipase secreted by untreated cells (Mr = 58 kDa). We conclude that glycosylation and subsequent oligosaccharide processing play a permissive role in the secretion of hepatic lipase. As secretion is prevented by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin, but not by inhibitors of subsequent oligosaccharide trimming, the removal of glucose residues from the high-mannose oligosaccharide intermediate in the rough endoplasmic reticulum appears the determining step.  相似文献   

10.
1-Deoxynojirimycin was found to inhibit oligosaccharide processing of rat alpha 1-proteinase inhibitor. In normal hepatocytes alpha 1-proteinase inhibitor was present in the cells as a 49,000 Mr high mannose type glycoprotein with oligosaccharide side chains having the composition Man9GlcNAc and Man8GlcNAc with the former in a higher proportion. Hepatocytes treated with 5 mM 1-deoxynojirimycin accumulated alpha 1-proteinase inhibitor as a 51,000 Mr glycoprotein with carbohydrate side chains of the high mannose type, containing glucose as measured by their sensitivity against alpha-glucosidase, the largest species being Glc3Man9GlcNAc. Conversion to complex oligosaccharides was inhibited by the drug. In addition, increasing concentrations of 1-deoxynojirimycin inhibited glycosylation resulting in the formation of some alpha 1-proteinase inhibitor with two instead of three oligosaccharide side chains. 5 mM 1-deoxynojirimycin inhibited the secretion of alpha 1-proteinase inhibitor by about 50%, whereas secretion of albumin was unaffected. The oligosaccharides of alpha 1-proteinase inhibitor secreted from 1-deoxynojirimycin-treated cells were characterized by their susceptibility to endoglucosaminidase H, incorporation of [3H]galactose, and [3H]fucose and concanavalin A-Sepharose chromatography. It was found that 1-deoxynojirimycin did not completely block oligosaccharide processing, resulting in the formation of alpha 1-proteinase inhibitor molecules carrying one or two complex type oligosaccharides. Only these alpha 1-proteinase inhibitor molecules processed to the complex type in one or two of their oligosaccharide chains were nearly exclusively secreted. This finding demonstrates the importance of oligosaccharide processing for the secretion of alpha 1-proteinase inhibitor.  相似文献   

11.
The threonine analog beta-hydroxynorvaline (Hnv) is an inhibitor of asparagine-linked glycosylation. In the presence of the analog hepatocytes synthesized immunoreactive alpha 1-acid glycoprotein with 0-6 oligosaccharide chains. Pulse-chase experiments were conducted to compare the rates of secretion of alpha 1-acid glycoprotein from untreated, tunicamycin-treated, and Hnv-treated cells. Partially glycosylated (1-5 oligosaccharide chains) and unglycosylated (tunicamycin-inhibited) molecules exited the cells more slowly than native alpha 1-acid glycoprotein. In addition, secretion of fully glycosylated (6 oligosaccharide chains) alpha 1-acid glycoprotein was retarded in Hnv-treated cells when compared to controls. The slowest rate of secretion was exhibited by the unglycosylated form from Hnv-treated cells. These results suggest that Hnv-induced changes either in the extent of glycosylation or in the peptide sequence of alpha 1-acid glycoprotein can interfere with its transport through the cell. The major intracellular forms of alpha 1-acid glycoprotein from control and Hnv-treated cells were endoglycosidase H-sensitive and contained Man9-8 GlcNAc2 oligosaccharide structures. The oligosaccharide chains on the secreted molecules from control and Hnv-treated cells were entirely of the endoglycosidase H-resistant, complex type.  相似文献   

12.
The human asialoglycoprotein receptor (ASGP-R) is a membrane glycoprotein of 46,000 Da which possesses two N-linked oligosaccharide chains (Schwartz, A. L., and Rup, D. (1983) J. Biol. Chem. 258, 11249-11255). In order to examine the role of N-linked oligosaccharides in the biosynthesis, intracellular routing, and function of the ASGP-R, we have used Hep G2 cells, which have a large number of ASGP-R, and two inhibitors of glycosylation, swainsonine and tunicamycin. In the presence of swainsonine, newly synthesized ASGP-R is a 43,000-Da species which is endoglycosidase H-sensitive, appears on the Hep G2 cell surface, and specifically binds 125I-asialoorosomucoid (ASOR). In the presence of tunicamycin newly synthesized ASGP-R is a 34,000-Da nonglycosylated species which appears on the Hep G2 cell surface where it specifically binds 125I-ASOR. There is no major effect on subsequent uptake and degradation of 125I-ASOR in cells whose ASGP-R was synthesized in the presence of tunicamycin. The turnover of ASGP-R synthesized in the presence of either swainsonine or tunicamycin is not significantly altered from that found for the normal 46,000-Da species. Thus, it appears that the two N-linked oligosaccharide chains of the human ASGP-R do not play a major role in the intracellular routing, turnover, or function of ASGP-R.  相似文献   

13.
The 57,000- to 65,000-dalton (Da) Marek's disease herpesvirus A (MDHV-A) antigen glycoprotein (gp57-65) has a 47,000-Da unglycosylated precursor polypeptide (pr47), as determined by immunological detection after cell-free translation of infected-cell mRNA. Cleavage of its signal peptide yielded a 44,000-Da precursor polypeptide molecule (pr44), detected both in vivo after tunicamycin inhibition of glycosylation and in vitro after dog pancreas microsome processing of pr47. High-resolution pulse-chase studies showed that pr44 was quickly glycosylated (within 1 min) to nearly full size, a rapid processing time consistent with a cotranslational mode of glycosylation. This major glycosylation intermediate was further modified 6 to 30 min postsynthesis (including the addition of sialic acid), and mature MDHV-A was secreted 30 to 120 min postsynthesis. Limited apparent secretion of pr44 occurred only in the first minute postsynthesis, in contrast to the later secretion of most of the MDHV-A polypeptide as the fully glycosylated form described above. In addition, in the presence of tunicamycin a small fraction of the newly synthesized MDHV-A protein appeared as a secreted, partially glycosylated, heterogeneously sized precursor larger than pr44. pr44 constituted the major fraction of the new MDHV-A made in the presence of the inhibitor but the precursor was smaller than mature MDHV-A. These data indicate that there is a minor glycosylation pathway not sensitive to tunicamycin and that "normal" glycosylation is not necessary for secretion. Collectively, the data demonstrate that the rapid release of most of the fully glycosylated form of MHDV-A from the cell shortly after synthesis is true secretion in a well-regulated and precisely programmed way and not the result of cell death and disruption.  相似文献   

14.
The biosynthetic pathway governing inhibin heterodimer (alpha/beta) and activin homodimer (beta/beta) assembly and secretion from ovarian granulosa cells is not fully understood. Here, we examined the role of inhibin subunit glycosylation in the assembly and secretion of mature inhibin A and activin A. Inhibition of subunit glycosylation by tunicamycin treatment of alpha- and beta(A)-expressing CHO cell lines reduced inhibin but not activin secretion. Dimeric inhibin A is preferentially secreted from parental isogenic wild-type (wt) cell lines (alpha(wt)beta(wt)). Mutation of a single glycosylation site at asparagine 268 (alpha(Delta268)beta(wt)) reduces inhibin secretion by 78% and permits beta/beta assembly and secretion. Conversely, gain of a glycosylation (GOG) site in the analogous region of the beta(A)-subunit (alpha(wt)beta(GOG327)) enhances inhibin A secretion. The present study demonstrates that N-linked glycan sites direct heterodimer vs. homodimer assembly, and prevention of glycosylation abrogates inhibin secretion. These data support a definitive role for site-specific N-glycosylation in governing inhibin/activin dimer assembly and secretion.  相似文献   

15.
Antibodies to the alpha and beta 2 subunits and site-directed antibodies that distinguish alpha subunits of the RI and RII subtypes have been used to study the biosynthesis and assembly of sodium channels. The RII sodium channel subtype is preferentially expressed in rat brain neurons in primary cell culture. Post-translational processing of alpha subunits includes incorporation of palmityl residues in thioester linkage and sulfate residues attached to oligosaccharides. The incorporation of [3H] palmitate into alpha subunits is inhibited by tunicamycin, indicating that it occurs in the early stages of biosynthesis but after co-translational glycosylation. Mature alpha subunits are attached to beta 2 subunits through disulfide bonds within 1 h after synthesis and up to 30% can be specifically immunoprecipitated from the cell surface with antibodies against the beta 2 subunits by 4 h after synthesis. The remaining alpha subunits remain in an intracellular pool. The alpha subunits synthesized in the presence of castanospermine and swainsonine have reduced apparent size. Castanospermine prevents incorporation of approximately 81% of the sialic acid of the alpha subunit and inhibits sulfation but not palmitylation. Although inhibition of glycosylation with tunicamycin blocks assembly of functional sodium channels, castanospermine and swainsonine do not prevent the covalent assembly of alpha and beta 2 subunits or the transport of alpha beta 2 complexes to the cell surface, and sodium channels synthesized under these conditions have normal affinity for saxitoxin. Thus, the extensive processing and terminal sialylation of oligosaccharide chains during maturation of the alpha subunit is not essential. A kinetic model for biosynthesis, processing, and assembly of sodium channel subunits is presented.  相似文献   

16.
We are interested in determining whether carbohydrates are important regulatory determinants in the intracellular transport and secretion of glycoproteins. In the present study, we have used swainsonine, an indolizidine alkaloid, to modify the structure of N-glycosidically linked complex oligosaccharides. By inhibiting Golgi mannosidase II, swainsonine prevents the trimming of GlcNAc(Man)5(GlcNAc)2 to GlcNAc-(Man)3(GlcNAc)2, resulting in the formation of hybrid-type oligosaccharides. We find, from pulse-chase experiments using [35S]methionine and immunoprecipitation of individual proteins from culture media, that swainsonine treatment (1 microgram/ml) accelerated the secretion of glycoproteins (transferrin, ceruloplasmin, alpha 2-macroglobulin, and alpha 1-antitrypsin) by decreasing the lag period by 10-15 min relative to untreated cultures. The enhanced secretion was specific for glycoproteins since the secretion of albumin, a nonglycoprotein, was unaffected. When alpha 1-antitrypsin was immunoprecipitated from the cell lysates, sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorographic analysis demonstrated that the conversion of the high-mannose precursor to the hybrid form in swainsonine-treated cells occurred more rapidly (by about 10 min) than the conversion to the complex form in control cells. Since both the hybrid and complex forms of alpha 1-antitrypsin are terminally sialylated by sialyltransferase in the trans-Golgi, these results suggest that swainsonine-modified glycoproteins traverse the Golgi more rapidly than their normal counterparts. Therefore, accelerated transport within this organelle may account for the decreased lag period of glycoprotein secretion in the swainsonine-treated cultures.  相似文献   

17.
Transfection of the human cathepsin K cDNA into CHO cells results in the expression of mature catalytically active 27-kDa protein and in cells secreting the 39-kDa proenzyme form. Monensin, which neutralizes the pH of acidic organelles, was found to inhibit intracellular processing of the proenzyme and to stimulate its secretion into the culture medium. Brefeldin A caused alterations in immunofluorescence staining consistent with interference of lysosomal targeting and inhibited both intracellular processing and secretion of cathepsin K. Inhibition of glycosylation by tunicamycin also abolished cathepsin K maturation. Furthermore, the processing of the proenzyme to the mature form was abolished by a single mutation of the terminal Met(329) to Ala. The triple mutation of Ser(325), Pro(327), and Met(329) (all to Ala) inhibited both maturation and secretion, using either transient or stable expression systems. The results indicate that intracellular maturation and secretion of cathepsin K can be affected differentially by various treatments and by mutations of the C-terminal end of the protein. These results are consistent with the involvement of both the secreted proenzyme and the intracellularly processed enzyme in cathepsin K-mediated processes.  相似文献   

18.
During synthesis in vivo the castor bean lectin precursors initially appear in the endoplasmic reticulum as a group of core glycosylated polypeptides of relative molecular mass 64 000-68 000. Pretreatment of intact castor bean endosperm tissue with tunicamycin partially inhibits the cotranslational core glycosylation step and results in the accumulation of a single sized unglycosylated precursor polypeptide of relative molecular mass 59 000. The glycosylated precursors in the endoplasmic reticulum were enzymically converted to the 59 000-Mr form by incubation with endoglucosaminidase H. Intracellular transport of the glycosylated lectin precursors from the endoplasmic reticulum to a denser vesicle fraction was accompanied by modifications to the oligosaccharide moieties which conferred resistance to the action of endoglucosaminidase H. The post-translational addition of fucose to the carbohydrate chain was identified as one of the oligosaccharide modification steps. Fucose addition was catalysed by a glycosyltransferase associated with a smooth-surfaced membrane fraction which was distinct from the endoplasmic reticulum and which was tentatively identified as the Golgi apparatus. Glycosylation was not essential for intracellular transport of the lectin precursors: unglycosylated precursor synthesized in the presence of tunicamycin gave rise to unglycosylated lectin subunits in the protein bodies.  相似文献   

19.
Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common alpha subunit but differ in their hormone-specific beta subunit. Site-directed mutagenesis of the two asparagine-linked glycosylation sites of hCG alpha was used to study the function of the individual oligosaccharide chains in secretion and subunit assembly. Expression vectors for the alpha genes (wild-type and mutant) and the hCG beta gene were constructed and transfected into Chinese hamster ovary cells. Loss of the oligosaccharide at position 78 causes the mutant subunit to be degraded quickly and less than 20% is secreted. However, the presence of hCG beta stabilizes this mutant and allows approximately 45% of the subunit in the form of a dimer to exit the cell. Absence of carbohydrate at asparagine 52 does not perturb the stability or transport of the alpha subunit but does affect dimer secretion; under conditions where this mutant or hCG beta was in excess, less than 30% is secreted in the form of a dimer. Mutagenesis of both glycosylation sites affects monomer and dimer secretion but at levels intermediate between the single-site mutants. We conclude that there are site-specific functions of the hCG alpha asparagine-linked oligosaccharides with respect to the stability and assembly of hCG.  相似文献   

20.
Tunicamycin, an antibiotic that prevents glycosylation of glycoproteins by blocking the formation of N-acetylglucosamine-lipid intermediates, was used to study the importance of glycosylation for the secretion of immunoglobulins by mouse plasmacytoma lines that produce immunoglobulins of different classes. Biosynthetically labeled secreted and intracellular immunoglobulins were measured by immunoprecipitation assays. Tunicamycin, at a concentration of 0.5 mug/ml produced an 81% inhibition of IgM secretion by MOPC 104E plasma cells without significantly affecting the initial rate of synthesis of intracellular IgM. No increase in the intracellular degradation of nonglycosylated IgM could be demonstrated. Tunicamycin also produced a 64% average inhibition of IgA secretion by several mouse IgA-secreting plasmacytoma lines. In contrast, despite inhibiting the incorporation of D-[14C] glucosamine into newly synthesized IgG, tunicamycin only produced a 28% average inhibition of IgG secretion, which was only slightly more than the nonspecific inhibition of secretion of the normally nonglycosylated lambda2 light chains by variant MOPC 315 plasmacytomas. These data indicate that the extent of inhibition of immunoglobulin secretion produced by tunicamycin depends on the immunoglobulin class produced by the plasma cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号