首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.  相似文献   

2.
The focus of this review is on how plants respond to combinations of multiple air pollutants. Global pollution trends, plant physiological responses and ecological perspectives in natural and agricultural systems are all discussed. In particular, we highlight the importance of studying sequential or simultaneous exposure of plants to pollutants, rather than exposure to individual pollutants in isolation, and explore how these responses may interfere with the way plants interact with their biotic community. Air pollutants can alter the normal physiology and metabolic functioning of plants. Here we describe how the phenotypic and molecular changes in response to multiple pollutants can differ compared to those elicited by single pollutants, and how different responses have been observed between plants in the field and in controlled laboratory conditions and between trees and crop plants. From an ecological perspective, we discuss how air pollution can result in greater susceptibility to biotic stressors and in direct or indirect effects on interactions with organisms that occupy higher trophic levels. Finally, we provide an overview of the potential uses of plants to mitigate air pollution, exploring the feasibility for pollution removal via the processes of bio‐accumulation and phytoremediation. We conclude by proposing some new directions for future research in the field.  相似文献   

3.
Conservation biologists increasingly face the need to provide legislators, courts and conservation managers with data on causal mechanisms underlying conservation problems such as species decline. To develop and monitor solutions, conservation biologists are progressively using more techniques that are physiological. Here, we review the emerging discipline of conservation physiology and suggest that, for conservation strategies to be successful, it is important to understand the physiological responses of organisms to their changed environment. New physiological techniques can enable a rapid assessment of the causes of conservation problems and the consequences of conservation actions.  相似文献   

4.
Borsook D  Maleki N  Becerra L  McEwen B 《Neuron》2012,73(2):219-234
The brain and body respond to potential and actual stressful events by activating hormonal and neural mediators and modifying behaviors to adapt. Such responses help maintain physiological stability ("allostasis"). When behavioral or physiological stressors are frequent and/or severe, allostatic responses can become dysregulated and maladaptive ("allostatic load"). Allostatic load may alter brain networks both functionally and structurally. As a result, the brain's responses to continued/subsequent stressors are abnormal, and behavior and systemic physiology are altered in ways that can, in a vicious cycle, lead to further allostatic load. Migraine patients are continually exposed to such stressors, resulting in changes to central and peripheral physiology and function. Here we review how changes in brain states that occur as a result of repeated migraines may be explained by a maladaptive feedforward allostatic cascade model and how understanding migraine within the context of allostatic load model suggests alternative treatments for this often-debilitating disease.  相似文献   

5.
Global declines of macroalgal beds in coastal waters have prompted a plethora of studies attempting to understand the drivers of change within dynamic nearshore ecosystems. Photosynthetic measurements are good tools for assessing the consequences of numerous stressors of macroalgae, but there is somewhat of a disconnection between studies that focus on organism‐specific ecophysiological responses and those that address causes and consequences of shifts in macroalgal productivity. Our goal is to highlight the applications of two complementary tools for measuring photosynthesis—variable chlorophyll a fluorescence and photorespirometry—and provide guidance for the integration of physiology and ecology to understand the drivers of change in macroalgal communities. Photorespirometry can provide an integrated measure of whole‐community metabolism, including an estimate of the physiological costs associated with stressors, while fluorescence‐based techniques provide point measures of the efficiency of the photosynthetic apparatus within communities. Variable chlorophyll a fluorescence does not provide an estimate of carbon balance or integrated photosynthesis across either whole plants or whole communities but can be used to estimate the contribution of individual community components in the dynamic subcanopy environment to help us understand the mechanisms underlying observed responses. We highlight the importance of the highly dynamic light environment within macroalgal communities and call for better integration of physiological techniques in an ecological context to enhance our understanding of the responses of whole communities to local and global stressors.  相似文献   

6.
7.
Biological and ecological responses to stress are dictated by duration and frequency, as well as instantaneous magnitude. Conditional compensatory responses at the physiological and behavioral levels, referred to as ‘acclimation’, may mitigate effects on individuals experiencing brief or infrequent periods of moderate stress. However, even modest stress over extended periods may reduce the fitness of some or all exposed individuals. In this way, specific stress that persists over multiple generations will increase probabilities for extinction of populations composed of sensitive individuals. For populations whose members demonstrate variance and heritability for stressor response, this selective loss of sensitive individuals may result in populations dominated by resistant individuals. The formation of these ‘adapted’ populations may be considered an ecological compensatory mechanism to multi-generational stress. Paradoxically, the biological costs to individuals of toxicity and physiological acclimation may result in obvious signs of stress in affected wildlife populations while the costs of genetic adaptation may be more covert. It is important to consider such costs because recent evidence suggests that anthropogenic stressors have acted as powerful selection agents that have modified the composition of wildlife populations subjected for successive generational exposures to specific stressors. This essay focuses on a case study where adaptation has been demonstrated in fish populations with a history of chronic exposure to persistent, bioaccumulative and toxic environmental contaminants. Because the magnitude, breadth and long-term outcomes of such changes are unknown, ecological risk assessments that are limited in focus to short-term exposures and consequences may seriously underestimate the ecological and evolutionary impacts of anthropogenic stressors.  相似文献   

8.
Conservation biological control relies on modification of the environment or management practices to protect and encourage natural enemies that are already present within the system, thereby enhancing and improving their ability to control pest populations in a reliable way. Such strategies are only possible when based on a strong understanding of the ecology of the species concerned at the individual, community and landscape scale. Conservation biological control with entomopathogenic fungi includes the manipulation of both the crop environment and also habitats outside the crop. Further investment in conservation biological control with entomopathogenic fungi could make a substantial contribution to sustainable crop production either as stand alone strategies or, more importantly, in support of other biological and integrated pest management strategies.  相似文献   

9.
ABSTRACT: The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such "microbial modules" interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons.  相似文献   

10.
The major issues regarding the welfare of both farmed and laboratory rabbits are reviewed, according to husbandry and management systems. The main stressors that can affect welfare and homeostatic responses in rabbits are also reviewed. An overview of the most widespread housing systems for both farmed and laboratory rabbits is presented. The main problems related to housing and management are identified, in particular those related to individual and group housing, space requirements and group size, as well as human-animal interaction. The effects of psychological and physical stressors on physiology and behaviour are illustrated through examples in various rearing conditions. Psychological stressors include social stress and fear, while physical stressors include environmental variables such as housing system and climatic factors, i.e. heat. Welfare indicators are identified that can be monitored to determine the effects of individual and environmental variables on the animals' possible coping strategies. Physiological indicators include the neuro-endocrine and psycho-neuro-immuno-endocrine measurements, while behavioural indicators include the behavioural repertoire and responses to behavioural tests. Some possible ways to enhance welfare are indicated, such as enrichment of the environment and improved handling procedures.  相似文献   

11.
Elasmobranchs (sharks, rays, and skates) are currently facing substantial anthropogenic threats, which expose them to acute and chronic stressors that may exceed in severity and/or duration those typically imposed by natural events. To date, the number of directed studies on the response of elasmobranch fishes to acute and chronic stress are greatly exceeded by those related to teleosts. Of the limited number of studies conducted to date, most have centered on sharks; batoids are poorly represented. Like teleosts, sharks exhibit primary and secondary responses to stress that are manifested in their blood biochemistry. The former is characterized by immediate and profound increases in circulating catecholamines and corticosteroids, which are thought to mobilize energy reserves and maintain oxygen supply and osmotic balance. Mediated by these primary responses, the secondary effects of stress in elasmobranchs include hyperglycemia, acidemia resulting from metabolic and respiratory acidoses, and profound disturbances to ionic, osmotic, and fluid volume homeostasis. The nature and magnitude of these secondary effects are species-specific and may be tightly linked to metabolic scope and thermal physiology as well as the type and duration of the stressor. In fishes, acute and chronic stressors can incite a tertiary response, which involves physiological changes at the organismal level, thereby impacting growth rates, reproductive outputs or investments, and disease resistance. Virtually no studies to date have been conducted on the tertiary stress response in elasmobranchs. Given the diversity of elasmobranchs, additional studies that characterize the nature, magnitude, and consequences of physiological stress over a broad spectrum of stressors are essential for the development of conservation measures. Additional studies on the primary, secondary, and tertiary stress response in elasmobranchs are warranted, with particular emphasis on expanding the range of species and stressors examined. Future studies should move beyond simply studying the effects of known stressors and focus on the underlying physiological mechanisms. Such studies should include the coupling of stress indicators with quantifiable aspects of the stressor, which will allow researchers to test hypotheses on survivorship and, ultimately, derive models that effectively link physiology to mortality. Studies of this nature are essential for decision-making that will result in the effective management and conservation of these species.  相似文献   

12.
Climate change is driving the redistribution of species at a global scale and documenting and predicting species' responses to warming is a principal focus of contemporary ecology. When interpreting and predicting their responses to warming, species are generally treated as single homogenous physiological units. However, local adaptation and phenotypic plasticity can result in intraspecific differences in thermal niche. Therefore, population loss may also not only occur from trailing edges. In species with low dispersal capacity this will have profound impacts for the species as a whole, as local population loss will not be offset by immigration of warm tolerant individuals. Recent evidence from terrestrial forests has shown that incorporation of intraspecific variation in thermal niche is vital to accurately predicting species responses to warming. However, marine macrophytes (i.e. seagrasses and seaweeds) that form some of the world's most productive and diverse ecosystems have not been examined in the same context. We conducted a literature review to determine how common intraspecific variation in thermal physiology is in marine macrophytes. We find that 90% of studies identified (n = 42) found clear differences in thermal niche between geographically separated populations. Therefore, non‐trailing edge populations may also be vulnerable to future warming trends and given their limited dispersal capacity, such population loss may not be offset by immigration. We also explore how next generation sequencing (NGS) is allowing unprecedented mechanistic insight into plasticity and adaptation. We conclude that in the ‘genomic era’ it may be possible to link understanding of plasticity and adaptation at the genetic level through to changes in populations providing novel insights on the redistribution of populations under future climate change.  相似文献   

13.
Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.  相似文献   

14.
At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity, assessing risks for local populations, or predicting and mitigating the spread of invasive species.  相似文献   

15.
16.
In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms.  相似文献   

17.
Climate change-integrated conservation strategies   总被引:8,自引:1,他引:7  
Aim Conservation strategies currently include little consideration of climate change. Insights about the biotic impacts of climate change from biogeography and palaeoecology, therefore, have the potential to provide significant improvements in the effectiveness of conservation planning. We suggest a collaboration involving biogeography, ecology and applied conservation. The resulting Climate Change‐integrated Conservation Strategies (CCS) apply available tools to respond to the conservation challenges posed by climate change. Location The focus of this analysis is global, with special reference to high biodiversity areas vulnerable to climate change, particularly tropical montane settings. Methods Current tools from climatology, biogeography and ecology applicable to conservation planning in response to climate change are reviewed. Conservation challenges posed by climate change are summarized. CCS elements are elaborated that use available tools to respond to these challenges. Results Five elements of CCS are described: regional modelling; expanding protected areas; management of the matrix; regional coordination; and transfer of resources. Regional modelling uses regional climate models, biotic response models and sensitivity analysis to identify climate change impacts on biodiversity at a regional scale appropriate for conservation planning. Expansion of protected areas management and systems within the planning region are based on modelling results. Management of the matrix between protected areas provides continuity for processes and species range shifts outside of parks. Regional coordination of park and off‐park efforts allows harmonization of conservation goals across provincial and national boundaries. Finally, implementation of these CCS elements in the most biodiverse regions of the world will require technical and financial transfer of resources on a global scale. Main conclusions Collaboration across disciplines is necessary to plan conservation responses to climate change adequately. Biogeography and ecology provide insights into the effects of climate change on biodiversity that have not yet been fully integrated into conservation biology and applied conservation management. CCS provide a framework in which biogeographers, ecologists and conservation managers can collaborate to address this need. These planning exercises take place on a regional level, driven by regional climate models as well as general circulation models (GCMs), to ensure that regional climate drivers such as land use change and mesoscale topography are adequately represented. Sensitivity analysis can help address the substantial uncertainty inherent in projecting future climates and biodiversity response.  相似文献   

18.
Conservation physiology (CP) and nutritional ecology (NE) are both integrative sciences that share the fundamental aim of understanding the patterns, mechanisms and consequences of animal responses to changing environments. Here, we explore the high-level similarities and differences between CP and NE, identifying as central themes to both fields the multiple timescales over which animals adapt (and fail to adapt) to their environments, and the need for integrative models to study these processes. At one extreme are the short-term regulatory responses that modulate the state of animals in relation to the environment, which are variously considered under the concepts of homeostasis, homeorhesis, enantiostasis, heterostasis and allostasis. In the longer term are developmental responses, including phenotypic plasticity and transgenerational effects mediated by non-genomic influences such as parental physiology, epigenetic effects and cultural learning. Over a longer timescale still are the cumulative genetic changes that take place in Darwinian evolution. We present examples showing how the adaptive responses of animals across these timescales have been represented in an integrative framework from NE, the geometric framework (GF) for nutrition, and close with an illustration of how GF can be applied to the central issue in CP, animal conservation.  相似文献   

19.
20.
From a conservationist perspective, seahorses are threatened fishes. Concomitantly, from a socioeconomic perspective, they represent a source of income to many fishing communities in developing countries. An integration between these two views requires, among other things, the recognition that seahorse fishers have knowledge and abilities that can assist the implementation of conservation strategies and of management plans for seahorses and their habitats. This paper documents the knowledge held by Brazilian fishers on the biology and ecology of the longsnout seahorse Hippocampus reidi. Its aims were to explore collaborative approaches to seahorse conservation and management in Brazil; to assess fishers' perception of seahorse biology and ecology, in the context evaluating potential management options; to increase fishers' involvement with seahorse conservation in Brazil. Data were obtained through questionnaires and interviews made during field surveys conducted in fishing villages located in the States of Piauí, Ceará, Paraíba, Maranhão, Pernambuco and Pará. We consider the following aspects as positive for the conservation of seahorses and their habitats in Brazil: fishers were willing to dialogue with researchers; although captures and/or trade of brooding seahorses occurred, most interviewees recognized the importance of reproduction to the maintenance of seahorses in the wild (and therefore of their source of income), and expressed concern over population declines; fishers associated the presence of a ventral pouch with reproduction in seahorses (regardless of them knowing which sex bears the pouch), and this may facilitate the construction of collaborative management options designed to eliminate captures of brooding specimens; fishers recognized microhabitats of importance to the maintenance of seahorse wild populations; fishers who kept seahorses in captivity tended to recognize the condtions as poor, and as being a cause of seahorse mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号