首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.

Background

Fructose administration rapidly induces oxidative stress that triggers compensatory hepatic metabolic changes. We evaluated the effect of an antioxidant, R/S-α-lipoic acid on fructose-induced oxidative stress and carbohydrate metabolism changes.

Methods

Wistar rats were fed a standard commercial diet, the same diet plus 10% fructose in drinking water, or injected with R/S-α-lipoic acid (35 mg/kg, i.p.) (control + L and fructose + L). Three weeks thereafter, blood samples were drawn to measure glucose, triglycerides, insulin, and the homeostasis model assessment-insulin resistance (HOMA-IR) and Matsuda indices. In the liver, we measured gene expression, protein content and activity of several enzymes, and metabolite concentration.

Results

Comparable body weight changes and calorie intake were recorded in all groups after the treatments. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR and lower Matsuda indices compared to control animals. Fructose fed rats showed increased fructokinase gene expression, protein content and activity, glucokinase and glucose-6-phosphatase gene expression and activity, glycogen storage, glucose-6-phosphate dehydrogenase mRNA and enzyme activity, NAD(P)H oxidase subunits (gp91phox and p22phox) gene expression and protein concentration and phosphofructokinase-2 protein content than control rats. All these changes were prevented by R/S-α-lipoic acid co-administration.

Conclusions

Fructose induces hepatic metabolic changes that presumably begin with increased fructose phosphorylation by fructokinase, followed by adaptive changes that attempt to switch the substrate flow from mitochondrial metabolism to energy storage. These changes can be effectively prevented by R/S-α-lipoic acid co-administration.

General significance

Control of oxidative stress could be a useful strategy to prevent the transition from impaired glucose tolerance to type 2 diabetes.  相似文献   

2.

Background

α-Eleostearic acid and punicic acid, two typical conjugated linolenic acid (CLnA) isomers present in bitter gourd and snake gourd oil respectively, exhibit contrasting cis-trans configuration which made them biologically important.

Methods

Rats were divided into six groups. Group 1 was control and group 2 was treated control. Rats in the groups 3 and 4 were treated with mixture of α-eleostearic acid and punicic acid (1:1) (0.5% and 1.0% respectively) while rats in the groups 5 and 6 were treated with 0.5% of α-eleostearic acid and 0.5% of punicic acid respectively along with sodium arsenite by oral gavage once per day.

Results

Results showed that increase in nitric oxide synthase (NOS) activity, inflammatory markers expression, platelet aggregation, lipid peroxidation, protein oxidation, DNA damage and altered expression of liver X receptor-α (LXR-α) after arsenite treatment were restored with the supplementation of oils containing CLnA isomers. Altered activities of different antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and ferric reducing ability of plasma (FRAP) also restored after oil supplementation. Altered morphology and fluidity of erythrocyte membrane studied by atomic force and scanning electron microscopy, after stress induction were significantly improved due to amelioration in cholesterol/phospholipid ratio and fatty acid profile of membrane. Oils treatment also improved morphology of liver and fatty acid composition of hepatic lipid.

Conclusions

Overall two isomers showed synergistic antioxidant and anti-inflammatory effect against induced perturbations and membrane disintegrity.

General significance

Synergistic antioxidant and anti-inflammatory role of these CLnA isomers were established by this study.  相似文献   

3.
4.
5.

Background

The present study was aimed at isolating an antidiabetic molecule from a herbal source and assessing its mechanism of action.

Methods

Embelin, isolated from Embelia ribes Burm. (Myrsinaceae) fruit, was evaluated for its potential to regulate insulin resistance, alter β-cell dysfunction and modulate key markers involved in insulin sensitivity and glucose transport using high-fat diet (HFD) fed-streptozotocin (STZ) (40 mg/kg)-induced type 2 diabetic rats. Molecular-dockings were performed to investigate the binding modes of embelin into PPARγ, PI3K, p-Akt and GLUT4 active sites.

Results

Embelin (50 mg/kg b wt.) reduced body weight gain, blood glucose and plasma insulin in treated diabetic rats. It further modulated the altered lipid profiles and antioxidant enzymes with cytoprotective action on β-cell. Embelin significantly increased the PPARγ expression in epididymal adipose tissue compared to diabetic control group; it also inhibited adipogenic activity; it mildly activated PPARγ levels in the liver and skeletal muscle. It also regulated insulin mediated glucose uptake in epididymal adipose tissue through translocation and activation of GLUT4 in PI3K/p-Akt signaling cascade. Embelin bound to PPARγ; it disclosed stable binding affinities to the active sites of PI3K, p-Akt and GLUT4.

Conclusions

These findings show that embelin could improve adipose tissue insulin sensitivity without increasing weight gain, enhance glycemic control, protect β-cell from damage and maintain glucose homeostasis in adipose tissue.

General significance

Embelin can be used in the prevention and treatment of type 2 diabetes mellitus caused due to obesity.  相似文献   

6.

Background

Small molecule fluorescent probes are vital tools for monitoring reactive oxygen species in cells.

Scope of review

The types of probe available, the extent to which they are specific or quantitative and complications in interpreting results are discussed.

Major conclusions

Most commonly used probes (e.g. dihydrodichlorofluorescein, dihydrorhodamine) have some value in providing information on changes to the redox environment of the cell, but they are not specific for any one oxidant and the response is affected by numerous chemical interactions and not just increased oxidant generation. These probes generate the fluorescent end product by a free radical mechanism, and to react with hydrogen peroxide they require a metal catalyst. Probe radicals can react with oxygen, superoxide, and various antioxidant molecules, all of which influence the signal. Newer generation probes such as boronates act by a different mechanism in which nucleophilic attack by the oxidant on a blocking group releases masked fluorescence. Boronates react with hydrogen peroxide, peroxynitrite, hypochlorous acid and in some cases superoxide, so are selective but not specific. They react with hydrogen peroxide very slowly, and kinetic considerations raise questions about how the reaction could occur in cells.

General significance

Data from oxidant-sensitive fluorescent probes can provide some information on cellular redox activity but is widely misinterpreted. Recently developed non-redox probes show promise but are not generally available and more information on specificity and cellular reactions is needed. We do not yet have probes that can quantify cellular production of specific oxidants. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

7.

Aims

Panduratin A isolated from Boesenbergia pandurata (Roxb.) has been reported to have antioxidant, anti-inflammatory, and anti-allergic activities. However, the effect of panduratin A on atopic dermatitis (AD) has not been studied. In the present study, we investigated the efficacy of panduratin A, an activator of peroxisome proliferator-activated receptors (PPAR) α/δ, using oxazolone-induced AD-like model in hairless mice.

Main methods

To determine PPARα/δ activation of panduratin A, HaCaT, Hs68, and COS-7 cells were treated with panduratin A, then PPARα/δ and PPAR response element (PPRE) activities were assessed with a reporter gene assay. For the in vivo study, oral administration of panduratin A was performed for 4 weeks, with oxazolone treatment every other day. The efficacy of panduratin A on parameters of oxazolone-induced AD was assessed physiologically, morphologically, and immunologically.

Key findings

Panduratin A increased PPARα/δ and PPRE activation both in vitro and in vivo. Panduratin A attenuated dermatitis-associated barrier damage as demonstrated by transepidermal water loss, erythema, and filaggrin expression. Furthermore, infiltration of inflammatory cells and epidermal thickness in the skin were decreased. Panduratin A decreased serum immunoglobulin (Ig) E and interleukin-4 levels but increased IgG2a and interferon-γ levels. In addition, panduratin A decreased inflammation-associated molecules in the skin. Panduratin A also decreased Th2-associated molecules and increased Th1/regulatory T cell (Treg)-associated molecules in the spleen.

Significance

Panduratin A showed a beneficial effect on AD by modulating Th1/Th2/Treg-associated immune response and is a potential candidate for treating AD.  相似文献   

8.

Background

Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases.

Scope of review

We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases.

Major conclusion

Induction of adaptive responses via AMPK–PFK2, AMPK–FOXO3a, AMPK–PGC-1α, and AMPK–mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases.

General significance

Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

9.

Background

Altered cellular bioenergetics and oxidative stress are emerging hallmarks of most cancers including pancreatic cancer. Elevated levels of intrinsic reactive oxygen species (ROS) in tumors make them more susceptible to exogenously induced oxidative stress. Excessive oxidative insults overwhelm their adaptive antioxidant capacity and trigger ROS-mediated cell death. Recently, we have discovered a novel class of quinazolinediones that exert their cytotoxic effects by modulating ROS-mediated signaling.

Methods

Cytotoxic potential was determined by colorimetric and colony formation assays. An XF24 Extracellular Flux Analyzer, and colorimetric and fluorescent techniques were used to assess the bioenergetics and oxidative stress effects, respectively. Mechanism was determined by Western blots.

Results

Compound 3a (6-[(2-acetylphenyl)amino]quinazoline-5,8-dione) was identified through a medium throughput screen of ~ 1000 highly diverse in-house compounds and chemotherapeutic agents for their ability to alter cellular bioenergetics. Further structural optimizations led to the discovery of a more potent analog, 3b (6-[(3-acetylphenyl)amino]quinazoline-5,8-dione) that displayed anti-proliferative activities in low micromolar range in both drug-sensitive and drug-resistant cancer cells. Treatment with 3b causes Akt activation resulting in increased cellular oxygen consumption and oxidative stress in pancreatic cancer cells. Moreover, oxidative stress induced by 3b promoted activation of stress kinases (p38/JNK) resulting in cancer cell death. Treatment with antioxidants was able to reduce cell death confirming ROS-mediated cytotoxicity.

Conclusion

In conclusion, our novel quinazolinediones are promising lead compounds that selectively induce ROS-mediated cell death in cancer cells and warrant further preclinical studies.

General significance

Since 3b (6-[(3-acetylphenyl)amino]quinazoline-5,8-dione) exerts Akt-dependent ROS-mediated cell death, it might provide potential therapeutic options for chemoresistant and Akt-overexpressing cancers.  相似文献   

10.

Aims

During the adipocyte differentiation, some intracellular organelles are degraded and instead lipid droplets are gradually accumulated in the cytoplasm for energy storage. Autophagy, a self-eating process, has been implicated in the removal of intracellular components in adipogenesis, but its mechanism is poorly understood. In this work we examined how α-lipoic acid modulates the autophagic process during the adipocyte differentiation.

Main methods

3T3-L1 pre-adipocytes were differentiated in the medium containing insulin, dexamethasone, and 1-methyl-3-isobutylxanthine. Lipid contents in adipocytes were determined by Oil-Red O staining. Autophagy was evaluated by Western blotting, accumulation of acidic vacuoles in cells.

Key findings

We observed that formation of LC3-II, an indicative marker for autophagy, was greatly down-regulated at the beginning stage of differentiation, but it was gradually increased with respect to earlier differentiation time. In addition, ATG5-12 conjugates were similarly produced, and acidic autophagic vacuoles were greatly elevated at the earlier stages of differentiation. Furthermore, α-lipoic acid deteriorated the intracellular accumulation of lipid droplets by blocking the production of acidic autophagic vacuoles, LC3-II, and other autophagy-related proteins during the adipocyte differentiation and influenced expression of adipocyte-stimulating factors. It also specifically suppressed activation of AMPK, an essential modulator for autophagy, at the earlier step of adipocyte differentiation.

Significance

These data suggest that α-lipoic acid significantly attenuates adipocyte differentiation via the direct modulation of intracellular degradation process and consequently decrease intracellular fat deposit of adipocytes.  相似文献   

11.

Background

Selective PPARγ modulators (sPPARγM) retains insulin sensitizing activity but with minimal side effects compared to traditional TZDs agents, is thought as a promising strategy for development of safer insulin sensitizer.

Methods

We used a combination of virtual docking, SPR-based binding, luciferase reporter and adipogenesis assays to analyze the interaction mode, affinity and agonistic activity of L312 to PPARγ in vitro, respectively. And the anti-diabetic effects and underlying molecular mechanisms of L312 was studied in db/db mice.

Results

L312 interacted with PPARγ-LBD in a manner similar to known sPPARγM. L312 showed similar PPARγ binding affinity, but displayed partial PPARγ agonistic activity compared to PPARγ full agonist pioglitazone. In addition, L312 displayed partial recruitment of coactivator CBP yet equal disassociation of corepressor NCoR1 compared to pioglitazone. In db/db mice, L312 (30 mg/kg·day) treatment considerably improved insulin resistance with the regard to OGTT, ITT, fasted blood glucose, HOMA-IR and serum lipids, but elicited less weight gain, adipogenesis and hemodilution compared with pioglitazone. Further studies demonstrated that L312 is a potent inhibitor of CDK5-mediated PPARγ phosphorylation and displayed a selective gene expression profile in epididymal WAT.

Conclusions

L312 is a novel sPPARγM.

General significance

L312 may represent a novel lead for designing ideal sPPARγM for T2DM treatment with advantages over current TZDs.  相似文献   

12.

Background

Obesity is a serious health problem all over the world, and inhibition of adipogenesis constitutes one of the therapeutic strategies for its treatment. Carnosic acid (CA), the main bioactive compound of Rosmarinus officinalis extract, inhibits 3T3-L1 preadipocytes differentiation. However, very little is known about the molecular mechanism responsible for its antiadipogenic effect.

Methods

We evaluated the effect of CA on the differentiation of 3T3-L1 preadipocytes analyzing the process of mitotic clonal expansion, the level of adipogenic markers, and the subcellular distribution of C/EBPβ.

Results

CA treatment only during the first day of 3T3-L1 differentiation process was enough to inhibit adipogenesis. This inhibition was accompanied by a blockade of mitotic clonal expansion. CA did not interfere with C/EBPβ and C/EBPδ mRNA levels but blocked PPARγ, and FABP4 expression. C/EBPβ has different forms known as LIP and LAP. CA induced an increase in the level of LIP within 24 h of differentiation, leading to an increment in LIP/LAP ratio. Importantly, overexpression of LAP restored the capacity of 3T3-L1 preadipocytes to differentiate in the presence of CA. Finally, CA promoted subnuclear de-localization of C/EBPβ.

Conclusions

CA exerts its anti-adipogenic effect in a multifactorial manner by interfering mitotic clonal expansion, altering the ratio of the different C/EBPβ forms, inducing the loss of C/EBPβ proper subnuclear distribution, and blocking the expression of C/EBPα and PPARγ.

General significance

Understanding the molecular mechanism by which CA blocks adipogenesis is relevant because CA could be new a food additive beneficial for the prevention and/or treatment of obesity.  相似文献   

13.
14.

Background

Albumin constitutes the most abundant circulating antioxidant and prevents oxidative damages. However, in diabetes, this plasmatic protein is exposed to several oxidative modifications, which impact on albumin antioxidant properties.

Methods

Most studies dealing on albumin antioxidant activities were conducted on in vitro modified protein. Here we tried to decipher whether reduced antioxidant properties of albumin could be evidenced in vivo. For this, we compared the antioxidant properties of albumin purified from diabetic patients to in vitro models of glycated albumin.

Results

Both in vivo and in vitro glycated albumins displayed impaired antioxidant activities in the free radical-induced hemolysis test. Surprisingly, the ORAC method (Oxygen Radical Antioxidant Capacity) showed an enhanced antioxidant activity for glycated albumin. Faced with this paradox, we investigated antioxidant and anti-inflammatory activities of our albumin preparations on cultured cells (macrophages and adipocytes). Reduced cellular metabolism and enhanced intracellular oxidative stress were measured in cells treated with albumin from diabetics. NF-kB –mediated gene induction was higher in macrophages treated with both type of glycated albumin compared with cells treated with native albumin. Anti inflammatory activity of native albumin is significantly impaired after in vitro glycation and albumin purified from diabetics significantly enhanced IL6 secretion by adipocytes. Expression of receptor for advanced glycation products is significantly enhanced in glycated albumin-treated cells.

Conclusions and general significance

Our results bring new evidences on the deleterious impairments of albumin important functions after glycation and emphasize the importance of in vivo model of glycation in studies relied to diabetes pathology.  相似文献   

15.

Background

Oxidative damage results in protein modification, and is observed in numerous diseases. Human serum albumin (HSA), the most abundant circulating protein in the plasma, exerts important antioxidant activities against oxidative damage.

Scope of review

The present review focuses on the characterization of chemical changes in HSA that are induced by oxidative damage, their relevance to human pathology and the most recent advances in clinical applications.

Major conclusions

The antioxidant properties of HSA are largely dependent on Cys34 and its contribution to the maintenance of intravascular homeostasis, including protecting the vascular endothelium under disease conditions related to oxidative stress. Recent studies also evaluated the susceptibility of other important amino acid residues to free radicals. The findings suggest that a redox change in HSA is related to the oxidation of several amino acid residues by different oxidants. Further, Cys34 adducts, such as S-nitrosylated and S-guanylated forms also play an important role in clinical applications. On the other hand, the ratio of the oxidized form to the normal form of albumin (HMA/HNA), which is a function of the redox states of Cys34, could serve as a useful marker for evaluating systemic redox states, which would be useful for the evaluation of disease progression and therapeutic efficacy.

General significance

This review provides new insights into our current understanding of the mechanism of HSA oxidation, based on in vitro and in vivo studies.This article is part of a Special Issue entitled Serum Albumin.  相似文献   

16.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

17.

Background

Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance.

Methods

The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC50 and the half-saturation constant of the transporter for external fosfomycin (Ki) were determined by transport assay of [14C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured.

Results

Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC50 of 6.4 mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the Ki measured was 1.65 mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects.

Conclusions

The poor transport observed in a reconstituted system together with the high value of Ki and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections.

General significance

This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.  相似文献   

18.
19.

Background

Diallyl disulfide (DADS) is a garlic-derived organosulfur compound. The current study is designed to evaluate the protective effects of DADS against ethanol-induced oxidative stress, and to explore the underlying mechanisms by examining the HO-1/Nrf-2 pathway.

Methods

We investigated whether or not DADS could activate the HO-1 in normal human liver cell LO2, and then evaluated the protective effects of DADS against ethanol-induced damage in LO2 cells and in acute ethanol-intoxicated mice. The biochemical parameters were measured using commercial kits. HO-1 mRNA level was determined by RT-PCR. Histopathology and immunofluorescence assay were performed with routine methods. Protein levels were measured by western blot.

Results

DADS significantly increased the mRNA and protein levels of HO-1, stimulated the nuclear translocation of Nrf-2 and increased the phosphorylation of MAPK in LO2 cells. The nuclear translocation of Nrf-2 was abrogated by MAPK inhibitors. DADS significantly suppressed ethanol-induced elevation of lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities, decrease of glutathione (GSH) level, increase of malondialdehyde (MDA) levels, and apoptosis of LO2 cells, which were all blocked by ZnPPIX. In mice, DADS effectively suppressed acute ethanol-induced elevation of aminotransferase activities, and improved liver histopathological changes, which might be associated with HO-1 activation.

Conclusion

These results demonstrate that DADS could induce the activation of HO-1/Nrf-2 pathway, which may contribute to the protective effects of DADS against ethanol-induced liver injury.

General significance

DADS may be beneficial for the prevention and treatment of ALD due to significant activation of HO-1/Nrf-2 pathway.  相似文献   

20.

Background and aim

Accumulating clinical evidence suggests that hyperuricemia is strongly associated with abnormal glucose metabolism and insulin resistance. However, how high uric acid (HUA) level causes insulin resistance remains unclear. We aimed to determine the direct role of HUA in insulin resistance in vitro and in vivo in mice.

Methods

An acute hyperuricemia mouse model was created by potassium oxonate treatment, and the impact of HUA level on insulin resistance was investigated by glucose tolerance test, insulin tolerance test and insulin signalling, including phosphorylation of insulin receptor substrate 1 (IRS1) and Akt. HepG2 cells were exposed to HUA treatment and N-acetylcysteine (NAC), reactive oxygen species scavenger; IRS1 and Akt phosphorylation was detected by Western blot analysis after insulin treatment.

Results

Hyperuricemic mice showed impaired glucose tolerance with insulin resistance. Hyperuricemia inhibited phospho-Akt (Ser473) response to insulin and increased phosphor-IRS1 (Ser307) in liver, muscle and fat tissues. HUA induced oxidative stress, and the antioxidant NAC blocked HUA-induced IRS1 activation and Akt inhibition in HepG2 cells.

Conclusion

This study supplies the first evidence of HUA directly inducing insulin resistance in vivo and in vitro. Increased uric acid level may inhibit IRS1 and Akt insulin signalling and induce insulin resistance. The reactive oxygen species pathway plays a key role in HUA-induced insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号