首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.

Background

Neurotrophins are important regulators for neural development and regeneration. Nerve growth factor (NGF) therapy has been tested in various models of neural injury and degeneration. However, whether NGF can reach target tissues and maintain effective concentration for a certain period of time remains uncertain. To facilitate neural regeneration, we investigate the possibility of combining NGF and electrical stimulation (ES) in promoting neurite outgrowth, an essential process during neural regeneration.

Methods

PC12 cells were seeded on collagen and indium tin oxide (ITO)-coated area on the transparent conductive devices. Cells were then subjected to the combination of ES and NGF treatment. Neurite outgrowth was compared.

Results

Our findings suggest that ES of 100 mV/mm together with NGF provides optimal effect on neurite outgrowth of PC12 cells. ES increases NGF-induced neurite length but reduces neurite branching, indicative of its primary effect on neurite elongation instead of initiation. One mechanism that ES enhances neurite outgrowth is through increasing NGF-induced phosphorylation of ERK1/2 (pERK1/2) and expression of Egr1 gene. ES has previously been demonstrated to increase the activity of protein kinase C (PKC). Our result indicates that activating PKC further increases NGF-induced pERK1/2 and thus neurite outgrowth.

Conclusion

It is likely that ES promotes NGF-induced neurite outgrowth through modulating the activity of ERK1/2.

General significance

Findings from this study suggest that combining ES and NGF provides a promising strategy for promoting neurite outgrowth.  相似文献   

2.

Aims

In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension.

Main methods

The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis.

Key findings

Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation.

Significance

These results suggest that saccharin enhances neurite extension by promoting microtubule organization.  相似文献   

3.

Background

An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis.

Methods

The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow.

Results

All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation.

Conclusions

The application of PEDOT polymers has evolved as a new perspective to advance stents.

General significance

In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

4.

Introduction

Epithelial cell adhesion molecule (EpCAM) is expressed in tumors with an epithelial cell of origin, in a heterogeneous manner. Prostate cancer stem-like cells highly express EpCAM. However, little is known about how EpCAM is involved in the ability of cells to adapt to micro-environmental changes in available growth factors, which is one of the essential biological phenotypes of cancer stem-like cells (CSCs).

Methods

EpCAM-high and EpCAM-low subpopulations of cells were established from the prostate cancer cell line PC-3. Signal transductions in response to serum starvation, and on the exposure to EGF ligand or the specific inhibitor were analyzed in terms. Furthermore, we analyzed the expression level of amino acid transporters which contribute to the activation of mTOR signal between the two subgroups.

Results

EpCAM-high and EpCAM-low PC-3 subpopulations showed markedly different responses to serum starvation. EpCAM expression was positively correlated with activation of the mTOR and epithelial growth factor receptor (EGFR) signaling pathways. Furthermore, AMP-activated protein kinase (AMPK) was gradually de-activated in EpCAM-low PC-3 cells in the absence of serum.

Conclusions

EpCAM regulates the AMPK signaling pathway, essential for the response to growth factors characterized by EGF. LAT1, the amino acid transporter stabilized at the cellular membrane by EpCAM, is likely to be responsible for the difference in the susceptibility to EGF between EpCAM-high and EpCAM-low PC-3 cells.  相似文献   

5.
6.
7.
8.

Background

Organic electrochemical transistors (OECT) have been used as various types of biosensors with very high sensitivity. The OECTs show advantages of easy fabrication, low operational voltage, excellent flexibility and biocompatibility.

Methods

OECT arrays based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were fabricated in poly(ethylene glycol) (PEG) microwells by physical delamination.

Results

The OECTs show fast response time, stable channel current and excellent transistor characteristics. The PEG microwells can be used to trap cells on top of the OECTs, which will be important for the application of the OECT arrays as cell-based biosensors.

General significance

This technique provides a feasible way for high-throughput cell analysis based on transistor arrays. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

9.
10.

Background

Changes in fibronectin (Fn) matrix remodeling contribute to mammary tumor angiogenesis and are related to altered behavior of adipogenic stromal cells; yet, the underlying mechanisms remain unclear due in part to a lack of reductionist model systems that allow the inherent complexity of cell-derived extracellular matrices (ECMs) to be deciphered. In particular, breast cancer-associated adipogenic stromal cells not only enhance the composition, quantity, and rigidity of deposited Fn, but also partially unfold these matrices. However, the specific effect of Fn conformation on tumor angiogenesis is undefined.

Methods

Decellularized matrices and a conducting polymer device consisting of poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) were used to examine the effect of Fn conformation on the behavior of 3T3-L1 preadipocytes. Changes in cell adhesion and proangiogenic capability were tested via cell counting and by quantification of vascular endothelial growth factor (VEGF) secretion, respectively. Integrin-blocking antibodies were utilized to examine varied integrin specificity as a potential mechanism.

Results

Our findings suggest that tumor-associated partial unfolding of Fn decreases adhesion while enhancing VEGF secretion by breast cancer-associated adipogenic precursor cells, and that altered integrin specificity may underlie these changes.

Conclusions and general significance

These results not only have important implications for our understanding of tumorigenesis, but also enhance knowledge of cell-ECM interactions that may be harnessed for other applications including advanced tissue engineering approaches. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

11.

Background

In chordates, retinoid metabolism is an important target of short-chain dehydrogenases/reductases (SDRs). It is not known whether SDRs play a role in retinoid metabolism of protostomes, such as Drosophila melanogaster.

Methods

Drosophila genome was searched for genes encoding proteins with ∼ 50% identity to human retinol dehydrogenase 12 (RDH12). The corresponding proteins were expressed in Sf9 cells and biochemically characterized. Their phylogenetic relationships were analyzed using PHYLIP software.

Results

A total of six Drosophila SDR genes were identified. Five of these genes are clustered on chromosome 2 and one is located on chromosome X. The deduced proteins are 300 to 406 amino acids long and are associated with microsomal membranes. They recognize all-trans-retinaldehyde and all-trans-3-hydroxyretinaldehyde as substrates and prefer NADPH as a cofactor. Phylogenetically, Drosophila SDRs belong to the same branch of the SDR superfamily as human RDH12, indicating a common ancestry early in bilaterian evolution, before a protostome–deuterostome split.

Conclusions

Similarities in the substrate and cofactor specificities of Drosophila versus human SDRs suggest conservation of their function in retinoid metabolism throughout protostome and deuterostome phyla.

General significance

The discovery of Drosophila retinaldehyde reductases sheds new light on the conversion of β-carotene and zeaxantine to visual pigment and provides a better understanding of the evolutionary roots of retinoid-active SDRs.  相似文献   

12.

Background

eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development.

Methods

We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis.

Results

Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues.

Conclusion

Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.  相似文献   

13.

Background

Intracellular signaling can be regulated by the exogenous addition of physiological protein inhibitors coupled to the TAT protein transduction domain. Thus far experiments have been performed with purified inhibitors added exogenously to cells in vitro or administered in vivo. Production of secretable TAT-fusion proteins by engineered mammalian cells, their uptake, and route of entry has not been thoroughly investigated. Such methodology, if established, could be useful for transplantation purposes.

Methods

Secretion of TAT-fusion proteins from transfected mammalian cells was achieved by means of a signal peptide. Cell uptake and subcellular localization of TAT-fusion proteins were determined by immunoblotting and confocal microscopy.

Results

Engineered TAT-fusion proteins were secreted with variable efficiency depending on the nature of the protein fused to the TAT peptide. Secreted proteins were able to transduce unmanipulated cells. Their mechanism of entry into cells partly involves lipid rafts and a portion of the internalised protein is directed to the Golgi.

Conclusions

Generation of secretable TAT-coupled inhibitors of signaling pathways, able to transduce other cells can be achieved.

General significance

These results provide key information that will assist in the design of TAT-inhibitors and engineered cells in order to regulate cell function within tissues.  相似文献   

14.

Background

Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma (PC-12) cells.

Methods

PC-12 cells were exposed to hypoxia, and cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry assay/Western blot analysis, respectively. Effects of propofol on hypoxia-injured cells were measured, and the expression of miR-153 was determined by stem-loop RT-PCR. After that, whether propofol affected PC-12 cells under hypoxia via miR-153 was verified, and the downstream protein of miR-153 as well as the involved signaling cascade was finally explored.

Results

Hypoxia-induced decrease of cell viability and increase of apoptosis were attenuated by propofol. Then, we found hypoxia exposure up-regulated miR-153 expression, and the level of miR-153 was further elevated by propofol in hypoxia-injured PC-12 cells. Following experiments showed miR-153 inhibition reversed the effects of propofol on hypoxia-treated PC-12 cells. Afterwards, we found BTG3 expression was negatively regulated by miR-153 expression, and BTG3 overexpression inhibited the mTOR pathway and AMPK activation. Besides, hypoxia inhibited the mTOR pathway and AMPK, and these inhibitory effects could be attenuated by propofol.

Conclusion

Propofol protected hypoxia-injured PC-12 cells through miR-153-mediataed down-regulation of BTG3. BTG3 could inhibit the mTOR pathway and AMPK activation.
  相似文献   

15.

Background

Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

Methods

Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are compared with other cell types in order to comparatively assess the electrical nature of chondrocytes.

Results

The results suggest that electrical cell membrane characteristics of chondrocyte cells are close to cardiomyoblast cells, cells known to possess an array of active ion channels. The blocking effect of the non-specific ion channel blocker gadolinium is tested on chondrocytes with a significant reduction in both membrane capacitance and conductance.

Conclusions

We have utilized a microfluidic chamber to mimic biomechanical events through changes in bioelectrochemistry and described the dielectric properties of chondrocytes to be closer to cells derived from electrically excitably tissues.

General significance

The study describes dielectric characterization of human costal chondrocyte cells using physical tools, where results and methodology can be used to identify potential anomalies in bioelectrochemical responses that may lead to cartilage disorders.  相似文献   

16.

Background

Conjugated polymers have been developed as effective materials for interfacing prosthetic device electrodes with neural tissue. Recent focus has been on the development of conjugated polymers that contain biological components in order to improve the tissue response upon implantation of these electrodes.

Methods

Carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) monomer was synthesized in order to covalently bind peptides to the surface of conjugated polymer films. EDOTacid was copolymerized with EDOT monomer to form stable, electrically conductive copolymer films referred to as PEDOT-PEDOTacid. The peptide GGGGRGDS was bound to PEDOT-PEDOTacid to create peptide functionalized PEDOT films.

Results

The PEDOT-PEDOTacid-peptide films increased the adhesion of primary rat motor neurons between 3 and 9 times higher than controls, thus demonstrating that the peptide maintained its biological activity.

Conclusions

The EDOT-acid monomer can be used to create functionalized PEDOT-PEDOTacid copolymer films that can have controlled bioactivity.

General Significance

PEDOT-PEDOTacid-peptide films have the potential to control the behavior of neurons and vastly improve the performance of implanted electrodes. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

17.

Background

Along with other regulators of cell metabolism, hypoxia-inducible factors HIF-1 and HIF-2 differentially regulate cell adaptation to hypoxia. Switches in HIF-1/HIF-2 signaling in chronic hypoxia have not been fully investigated.

Methods

Proliferation, viability, apoptosis, neuronal and bioenergetic markers, mitochondrial function, respiration, glycolysis, HIF signalling, responses to O2 and glucose deprivation (OGD) were examined using tumor PC12 and SH-SY5Y cells continuously grown at 3% O2.

Results

Hypoxic PC12 cells (H-cells) exhibit reduced proliferation and histone H4 acetylation, NGF-independent differentiation, activation of AMPK, inhibition of Akt, altered mitochondria and response to NGF. Cellular cytochrome c is increased with no effect on apoptosis. Reduction in respiration has minor effect on cellular ATP which is maintained through activated uptake (GLUT1) and utilization (HK2, PFK2) of glucose. H-cells exhibit resistance to OGD linked to increased glycogen stores. HIF-2alpha protein is decreased without changes in mRNA. Unlike HIF-1alpha, HIF-2alpha is not stabilized pharmacologically or by O2 deprivation. Capacity for HIF-2alpha stabilization is partly restored when H-cells are cultured at normoxia. In low-respiring SH-SY5Y cells cultured under the same conditions HIF-2alpha stabilization and energy budget are not affected.

Conclusions

In chronically hypoxic PC12 cells glycolytic energy budget, increased energy preservation and low susceptibility to OGD are observed. HIF-2alpha no longer orchestrates adaptive responses to anoxia.

General significance

Demonstrated switch in HIF-1/HIF-2 signaling upon chronic hypoxia can facilitate cell survival in energy crisis, by regulating balance between energy saving and decrease in proliferation, on one hand and active cell growth and tumor expansion, on the other.  相似文献   

18.
19.

Background

Amorphous silica nanoparticles (aSNPs) are used for various applications including food industry. However, limited in vivo studies are available on absorption/internalization of ingested aSNPs in the midgut cells of an organism. The study aims to examine cellular uptake of aSNPs (< 30 nm) in the midgut of Drosophila melanogaster (Oregon R+) owing to similarities between the midgut tissue of this organism and human and subsequently cellular stress response generated by these nanoparticles.

Methods

Third instar larvae of D. melanogaster were exposed orally to 1–100 μg/mL of aSNPs for 12–36 h and oxidative stress (OS), heat shock genes (hsgs), membrane destabilization (Acridine orange/Ethidium Bromide staining), cellular internalization (TEM) and apoptosis endpoints.

Results

A significant increase was observed in OS endpoints in the midgut cells of exposed Drosophila in a concentration- and time-dependent manner. Significantly increased expression of hsp70 and hsp22 along with caspases activation, membrane destabilization and mitochondrial membrane potential loss was also observed. TEM analysis showed aSNPs-uptake in the midgut cells of exposed Drosophila via endocytic vesicles and by direct membrane penetration.

Conclusion

aSNPs after their internalization in the midgut cells of exposed Drosophila larvae show membrane destabilization along with increased cellular stress and cell death.

General significance

Ingested aSNPs show adverse effects on the cells of GI tract of the exposed organism thus their industrial use as a food-additive may raise concern to human health.  相似文献   

20.

Background

Hydroxy-1-aryl-isochromans (HAIC) are newly emerging natural polyphenolic antioxidants, enriched in extravirgin olive oil, whose antioxidative potency was only scarcely characterized using cell-free systems and cells.

Methods

We characterized the activity of HAIC to inactivate reactive oxygen species (ROS) generated by the xanthine/xanthine oxidase system, mitochondria (rat brain) and neural cells. ROS levels were estimated using ROS-sensitive probes, such as Amplex Red, MitoSOXRED.

Results

HAIC (with 2, 3 or 4 hydroxyl substituents) effectively scavenge ROS released from mitochondria. EC50 values estimated with mitochondria and submitochondrial particles were around 20 μM. Moreover, in PC12 and cultured neural primary cells, HAIC buffered cytosolic ROS. Although HAIC permeate biological membranes, HAIC fail to buffer matrix ROS in isolated mitochondria. We show that hydrogen peroxide was effectively abolished by HAIC, whereas the production of superoxide was not affected.

Conclusion

HAIC exert high antioxidative activity to reduce hydrogen peroxide. The antioxidative activity of HAIC is comparable with that of the stilbene-like, polyphenolic resveratrol, but much higher than that of trolox, N-acetylcysteine or melatonin.

General significance

Unlike resveratrol, HAIC do not impair mitochondrial ATP synthesis or Ca2+ retention by mitochondria. Thus, HAIC have the decisive advantage to be potent antioxidants with no detrimental side effects on mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号