首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
de Almeida LM  Carareto CM 《Genetica》2004,121(2):155-164
The occurrence, number of insertion sites and antisense RNA expression of micropia transposable element were studied in 26 species that belong to three subgroups (mercatorum, mulleri and hydei) of repleta group of Drosophila. Under high specific PCR, micropia sequences were detected in 11 species, but under less stringent condition, this retrotransposon was detected in all species. The widespread distribution of micropia suggests that this element was already present at the common ancestor of the repleta group of Drosophila. Southern blot analysis showed a variation from 0 to 17 different insertion sites and the occurrence of male-specific sequences. We found that the expression of the 1.0 kb micropia antisense RNA is variable among the species and tissues (soma and testis), which suggests that more than one mechanism regulates transposition in these species. Variation of amplification by PCR and of antisense RNA expression, as well as divergence of nucleotide sequences among the species allow us to suggest that at least two subfamilies of micropia transposable element are harbored by the genome of this species group.  相似文献   

2.
3.
4.
5.
Members of species of the mulleri and hydei subgroups of the repleta group of Drosophila have duplicate Adh genes. The Adh regions of D. mojavensis, D. mulleri, and D. hydei contain three genes--a pseudogene, Adh-2, and Adh-1--arranged 5' to 3'. To understand the evolution of the triplicate Adh structure, we have cloned and sequenced the Adh locus of D. mettleri. This region consists of a 5' pseudogene and a 3' functional Adh gene. On the basis of the structure and nucleotide sequence comparisons of Adh genes of D. mettleri and other species, we propose that an initial duplication of the ancestral Adh gene generated two Adh genes arranged in tandem. The more 5' Adh gene became a pseudogene, while the more 3' gene remained functional through all the developmental stages. A second duplication of this 3' gene resulted in Adh regions with three genes--a pseudogene, Adh-2, and Adh-1.  相似文献   

6.
Wallau GL  Kaminski VL  Loreto EL 《Genetica》2011,139(11-12):1487-1497
The transposable element (TE) Paris was described in a Drosophila virilis strain (virilis species group) as causing a hybrid dysgenesis with other mobile genetic elements. Since then, the element Paris has only been found in D. buzzatii, a species from the repleta group. In this study, we performed a search for Paris-like elements in 56 species of drosophilids to improve the knowledge about the distribution and evolution of this element. Paris-like elements were found in 30 species from the Drosophila genus, 15 species from the Drosophila subgenus and 15 species from the Sophophora subgenus. Analysis of the complete sequences obtained from the complete available Drosophila genomes has shown that there are putative active elements in five species (D. elegans, D. kikkawai, D. ananassae, D. pseudoobscura and D. mojavensis). The Paris-like elements showed an approximately 242-bp-long terminal inverted repeats in the 5' and 3' boundaries (called LIR: long inverted repeat), with two 28-bp-long direct repeats in each LIR. All potentially active elements presented degeneration in the internal region of terminal inverted repeat. Despite the degeneration of the LIR, the distance of 185?bp between the direct repeats was always maintained. This conservation suggests that the spacing between direct repeats is important for transposase binding. The distribution analysis showed that these elements are widely distributed in other Drosophila groups beyond the virilis and repleta groups. The evolutionary analysis of Paris-like elements suggests that they were present as two subfamilies with the common ancestor of the Drosophila genus. Since then, these TEs have been primarily maintained by vertical transmission with some events of stochastic loss and horizontal transfer.  相似文献   

7.
The species in the repleta group of the genus Drosophila have been placed into five subgroups-the mulleri, hydei, mercatorum, repleta, and fasciola subgroups. Each subgroup has been further subdivided into complexes and clusters. Extensive morphological and cytological analyses of the members of this species group have formed the foundation for the proposed relationships among the members of the repleta species group. Fifty-four taxa, including 46 taxa belonging to the repleta species group, were sequenced for fragments of four genes-16S ribosomal DNA (16S), cytochrome oxidase II (COII), and nitrogen dehydrogenase 1 (ND1) of the mitochondrial genome and a region of the hunchback (hb) nuclear gene. We also generated a partial data set of elongation factor 1-alpha (Ef1alpha) sequences for a subset of taxa. Our analysis used both DNA characters and chromosomal inversion data. The phylogenetic hypothesis we obtained supports many of the traditionally accepted clades within the mulleri subgroup, but the monophyly of taxonomic groups outside of this subgroup appears not to be supported. Phylogenetic analysis revealed one well-supported, highly resolved clade that consists of closely related members of the mulleri and buzzatii complexes. The remaining taxa, a wide assortment of taxonomic groups, ranging from members of other species groups to members of several subgroups and members of three species complexes from the mulleri subgroup are found in poorly supported arrangements at the base of the tree.  相似文献   

8.
Dan H. Schulze  C. S. Lee 《Genetics》1986,113(2):287-303
DNA hybridization was used to establish DNA sequence relationships among seven Drosophila species. Single-copy DNA was isolated from four species within the Drosophila mulleri complex, D. mojavensis, D. arizonensis, D. ritae and D. starmeri. These single-copy DNAs were used as tracers to be hybridized with each other and one additional member of the mulleri complex, D. aldrichi, a member of a closely related complex, D. hydei, and a distantly related species, D. melanogaster. Two methods have been used to determine the relatedness between these species: (1) the extent of duplex formed as measured by binding to hydroxyapatite and (2) the thermal stability of the duplexed DNA. Moderately repetitive DNA was purified from these species and used similarly to determine the divergence of this family of sequences. The rate of nucleotide substitution was estimated to be 0.2 +/-, 0.1% base pair change per million years for both single-copy and middle-repetitive DNAs. The size of the D. arizonensis genome, a representative of the mulleri complex, was calculated to be 2.2 X 10(8) base pairs from its kinetic complexity similar to that of D. hydei. The relative amounts (18%) and average reiteration frequency (100 copies) of the middle-repetitive DNA are similar for all Drosophila species studied. Finally, the data are presented in a phylogenetic tree.  相似文献   

9.
Ruiz A  Wasserman M 《Genetics》1982,101(3-4):503-518
Drosophila buzzatii has been found sympatric in Argentina with a closely-related sibling species, D. serido. The biogeographical, reproductive and chromosomal data allow us to combine these species into an evolutionary unit, the buzzatii cluster. Salivary gland chromosomes also have been used to determine their phylogenetic relationships with other closely related species, showing that the buzzatii cluster species share two inversions—2d2 and 2s6—with the species of the martensis cluster. Both clusters arose from South American populations of the ancestor of the mulleri complex, and we propose to include D. buzzatii and D. serido in the mulleri complex of the repleta group.  相似文献   

10.
11.
Wagstaff BJ  Begun DJ 《Genetics》2007,177(2):1023-1030
The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.  相似文献   

12.
We studied the occurrence of O-type P elements in at least one species of each subgroup of the saltans group, in order to better understand the phylogenetic relationships among the elements within the saltans group and with those of species belonging to the willistoni group. We found that the O-type subfamily has a patchy distribution within the saltans group (it does not occur in D. neocordata and D. emarginata), low sequence divergence among species of the saltans group as well as in relation to species of the willistoni group, a lower rate of synonymous substitution for coding sequences compared to Adh, and phylogenetic incongruities. These findings suggest that the evolutionary history of the O-type subfamily within the saltans and willistoni groups follows the same model proposed for the canonical subfamily of P elements, i.e., events of horizontal transfer between species of the saltans and willistoni groups.  相似文献   

13.
Structure and Evolution of the Adh Genes of Drosophila Mojavensis   总被引:7,自引:5,他引:2  
The nucleotide sequence of the Adh region of Drosophila mojavensis has been completed and the region found to contain a pseudogene, Adh-2 and Adh-1 arranged in that order. Comparison of the sequence divergence of these genes to one another and to the Adh region of Drosophila mulleri and other species has allowed the development of a model for the evolution of the duplication of the Adh genes. There have been two major events. An initial duplication of an Adh gene whose dual promoter structure was similar to Drosophila melanogaster, resulted in a species with two Adh genes, one of which may have had only a proximal promoter. A second duplication of this gene generated an Adh region containing three genes. It is proposed that one of these is the ancestral gene having dual promoters, while the other two possess only proximal promoters. Subsequent events have resulted in both a change in the regulation of Adh-2 such that it is expressed as if it had a "distal" type promoter and the mutational inactivation of the most upstream gene resulting in the creation of a pseudogene. The sequence of the D. mojavensis Adh region has also revealed the presence of an element which is composed of juxtaposed inverted imperfectly repeated elements. There is a surprising and not fully explainable strong similarity of the nucleotide sequence of the 5' flanking region of the pseudogene in D. mojavensis and D. mulleri.  相似文献   

14.
The cactophilic Drosophila mojavensis species group living in the deserts and dry tropical forests of the southwestern United States and Mexico provides a valuable system for studies in diversification and speciation. Rigorous studies of the relationships between host races of D. mojavensis and the relationships among the members of the species group (D. mojavensis, Drosophila arizona, and Drosophila navojoa) are lacking. We used mitochondrial CO1 sequence data to address the phylogenetics and population genetics of this species group. In this study we have found that the sister species D. mojavensis and D. arizonae share no mitochondrial haplotypes and thus show no evidence for recent introgression. We estimate the divergence time between D. mojavensis and D. arizonae to be between 1.91 and 2.97 million years ago. D. arizonae shows little structure in our population genetic analyses but there is phylogenetic differentiation between southeastern and northern populations of D. arizonae. Drosophila mojavensis shows significant population and phylogenetic structure across the four geographic regions of its distribution. The mitochondrial data support an origin of D. mojavensis on the mainland with early differentiation into the populations now found in the Mojave Desert and the Mainland Sonoran Desert and later colonization of the Baja Peninsula, in contrast to previous models. Also, the sister clade to D. mojavensis/D. arizonae includes D. navojoa and Drosophila huaylasi. By defining the genetic relationships among these populations, we provide a foundation for more sophisticated hypothesis testing regarding the timing of early speciation events and host switches in this species group.  相似文献   

15.
Horizontal transfer and selection in the evolution of P elements   总被引:2,自引:0,他引:2  
The roles of selection and horizontal transfer in the evolution of the canonical subfamily of P: elements were studied in the saltans and willistoni species groups of the genus Drosophila (subgenus Sophophora). We estimate that the common ancestor of the canonical P: subfamily dates back 2-3 Myr at the most, despite the much older age (more than 40 Myr) of the P: family as a whole. The evolution of the canonical P: subfamily is characterized by weak selection at nonsynonymous sites. These sites have evolved at three quarters the rate of synonymous sites, in which no selective constraints were detected. Their recent horizontal transfer best explains the high degree of similarity among canonical P: elements from the saltans and willistoni species groups. These results are consistent with a model of P:-element evolution in which selective constraints are imposed at the time of horizontal transfer. Furthermore, it is estimated that the spread and diversification of the canonical subfamily involved a minimum of 11 horizontal transfer events among the 18 species surveyed within the past 3 Myr. The presence of multiple P: subfamilies in the saltans and willistoni species groups is likely to be the result of multiple invasions that have previously swept through these taxa in a succession of horizontal transfer events. These results suggest that horizontal transfer among eukaryotes might be more common than anticipated.  相似文献   

16.
We have used phylogenetic techniques to study the evolutionary history of the Penelope transposable element in the Drosophila virilis species group. Two divergent types of Penelope have been detected, one previously described, clade I, and a new one which we have termed clade III. The phylogeny of some copies of the Penelope clade I element was partially consistent with the species phylogeny of the D. montana subphylad, suggesting cospeciation and allowing the estimation of the evolutionary rate of Penelope. Divergence times of elements found in different species are younger than the age of the species, suggesting horizontal transfer events. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Dmitri Petrov]  相似文献   

17.
18.
Summary The transposable element mariner occurs widely in themelanogaster species group ofDrosophila. However, in drosophilids outside of themelanogaster species group, sequences showing strong DNA hybridization with mariner are found only in the genusZaprionus. the mariner sequence obtained fromZaprionus tuberculatus is 97% identical with that fromDrosophila mauritiana, a member of themelanogaster species subgroup, whereas a mariner sequence isolated fromDrosophila tsacasi is only 92% identical with that fromD. mauritiana. BecauseD. tsacasi is much more closely related toD. mauritiana than isZaprionus, the presence of mariner inZaprionus may result from horizontal transfer. In order to confirm lack of a close phylogenetic relationship between the genusZaprionus and themelanogaster species group, we compared the alcohol dehydrogenase (Adh) sequences among these species. The results show that the coding region of Adh is only 82% identical betweenZ. tuberculatus andD. mauritiana, as compared with 90% identical betweenD. tsacasi andD. mauritiana. Furthermore, the mariner gene phylogeny obtained by maximum likelihood and maximum parsimony analyses is discordant with the species phylogeny estimated by using the Adh genes. The only inconsistency in the mariner gene phylogeny is in the placement of theZaprionus mariner sequence, which clusters with mariner fromDrosophila teissieri andDrosophila yakuba in themelanogaster species subgroup. These results strongly suggest horizontal transfer.  相似文献   

19.
The genus Drosophila has played an essential role in many biological studies during the last 100 years but much controversy and many incompletely addressed issues still remain to be elucidated regarding the phylogeny of this genus. Because information on the Neotropical species contained in the subgenus Drosophila is particularly incomplete, with this taxonomic group being underrepresented in many studies, we designed a study to answer some evolutionary questions related to these species. We subjected at least 41 Drosophilidae taxa to a phylogenetic analysis using a 516-base pair (bp) fragment of the alpha-methyldopa (Amd) nuclear gene and a 672 bp fragment of the mitochondrial cytochrome oxidase subunit II (COII) gene both individually and in combination. We found that the subgenus Drosophila is paraphyletic and subdivided into two main clusters: the first containing species traditionally placed in the virilis-repleta radiation and the second assembling species of the immigrans-Hirtodrosophila radiation. Inside the first of these clusters we could detect the monophyly of both the flavopilosa (the sister-clade of the annulimana group) and the mesophragmatica (closely related to the repleta group) species groups. Concerning the immigrans-Hirtodrosophila lineage, Zaprionus, Liodrosophila, Samoaia, and Hirtodrosophila were the early offshoots, followed by the immigrans, quinaria, testacea, and funebris species groups. The tripunctata radiation appears to be a derived clade, composed of a paraphyletic tripunctata group, intimately interposed with members of the cardini, guarani, and guaramunu species groups. Overall, the COII gene yielded a poor phylogenetic performance when compared to the Amd gene, the evolutionary hypothesis of which agreed with the total evidence tree. This phenomenon can be explained by the fast saturation of transitional substitutions in COII, due to strong biases in both base composition and substitution patterns, as also by its great among-site rate variation heterogeneity.  相似文献   

20.
Drosophila mojavensis and other species of the mulleri subgroup contain a duplicate gene encoding the enzyme alcohol dehydrogenase (ADH). Studies on the genetic relationship of the two genes using electrophoretic variants show them to be closely linked. We have cloned a 13.5-kb fragment of D. mojavensis DNA into the lambda vector, Charon 30. This fragment contains both Adh genes separated by approximately 2 kb of DNA. The clone hybridized to a single position on chromosome 3 in D. mojavensis following in situ hybridization. It is likely that the genes are tandemly arranged in the genome. One of the two genes shows a complexity in its structure that suggests the close linkage of a pseudogene or part of a gene. The structure of the Adh locus in five species of the mulleri subgroup have been compared by constructing restriction maps of genomic DNA. Two of these species D. arizonensis and D. mojavensis express Adh-1 in the ovaries; the others do not. In comparing these species it is evident that there has been one or two insertions into the region between the Adh genes. It is possible that one of these structural changes is related to the change in Adh tissue-specific expression that has occurred during the evolution of these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号