首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethyl-5-acetyl-4-methyl-6-(4-methylphenylimino)-6H-thiopyran-2,3-dicarboxylate (4) has been synthesized and its antiproliferative activity is reported here. Compound 4 inhibited the growth of human colon cancer cell line HCT-15 with an IC(50) value of 3.5 μM and of breast cancer cell line MCF-7 with an IC(50) value of 1.5 μM in a dose/time-dependent manner using a sulforhodamine B assay. Moreover, suppression of clonogenic activity occurred after exposure to 4 at a concentration of 4 μM for HCT-15 and 1.7 μM for MCF-7. The results also showed tumor cell invasion through matrigel and cell adhesion. The effect of ligand complexation on DNA structure led to overall affinity constant of K(4-DNA)=9.8×10(4) M(-1).  相似文献   

2.
N(6)-Isopentenyladenosine (iPA), a member of the cytokinin family of plant hormones, exerts remarkable inhibition on tumor cell proliferation and apoptosis in several tumor cell lines. In this study, we report that iPA is able to inhibit the proliferation and promotes apoptosis in HCT-15 human colon cancer cells in a dose-dependent manner with a concentration of 2.5?μM, which causes 50% inhibition of cell viability. The cell cycle analysis by flow cytometry showed that iPA-induced growth arrest could be associated to apoptosis. Moreover, suppression of clonogenic activity occurs after exposure to iPA at a concentration of 2.5?μM for HCT-15.  相似文献   

3.
A series of (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides have been synthesized and evaluated for their anticancer activity in human hepatocellular liver carcinoma HepG2 and breast adenocarcinoma MCF-7?cell lines. Among all the tested compounds, compound 3a, 3e and 3n displayed more activity than lead compound with IC50 value of 0.26–0.61?μM. Meanwhile, these compounds (3a, 3e and 3n) showed potent antiproliferative activity against a panel of cancer cells and the HCT-8/T multidrug resistant cell line with IC50 values in the range of 0.077– 7.44?μM. Flow cytometric analyses revealed that compound 3n induced cell cycle arrest in G2/M phases in a dose dependent manner. The compound 3n also displayed potent tubulin polymerization inhibition with an IC50 value of 0.9?µM, with ten folds more active than colchicine (IC50?=?9?μM). Molecular docking studies revealed that compound 3n efficiently interacted with the colchicine binding site of tubulin through hydrophobic, cation-π and hydrogen bond interaction. Furthermore, in silico pharmacokinetic prediction shown that these compounds have a good ADME-related physicochemical parameters. These results demonstrate that 3n exhibits potent cytotoxicity in cancer cells by targeting the colchicine binding site of tubulin and potentially acts as a therapeutic lead compound for the development of anticancer drugs.  相似文献   

4.
Thirty-six of novel compounds 2-substituted-1-(2-morpholinoethyl)-1H-naphtho[2,3-d]imidazole-4,9-diones, bearing a N-(2-morpholinoethyl) group and a 2-substituted imidazole segment on a naphthoquinone skeleton, were designed, synthesized and tested as anticancer agents. Cytotoxicity was evaluated in vitro against three human cancer cell lines: human breast carcinoma cell line (MCF-7), human cervical carcinoma cell line (Hela), and human lung carcinoma cell line (A549); and one normal cell line: mouse fibroblast cell line (L929). Among them, the compound 2-(3-chloro-4-methoxyphenyl)-1-(2-morpholinoethyl)-1H-naphtho[2,3-d]imidazole-4,9-dione showed good antiproliferative activity against MCF-7, Hela and A549 (IC50 values are equal to 10.6?μM, 8.3?μM and 4.3?μM respectively) and low cytotoxicity to L929 (IC50 value is equal to 67.3?μM).  相似文献   

5.
Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity both in vitro and in vivo. N6-furfuryladenosine (kinetin riboside, KR) displays antiproliferative and apoptogenic activity against various human cancer cell lines and has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, we demonstrate that KR is able to inhibit the proliferation in HCT-15 human colon cancer cells in a dose-dependent manner with a concentration of 2.5 μM, which causes 50% inhibition of cell viability. The cell cycle analysis by flow cytometry showed that KR arrested cell cycle progression in the S Phase by blocking through G2/M and G0/G1 phase in HCT-15 colon cells. Moreover, suppression of clonogenic activity occurs after exposure to KR at a concentration of 2.5 μM for HCT-15.  相似文献   

6.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

7.
A new 2-thioquinazolinones series was designed and synthesized as HSP90 inhibitors based on the structure of hit compound VII obtained by virtual screening approach. Their in vitro anti-proliferative activity was evaluated against three human cancer cell lines rich in HSP90 namely; colorectal carcinoma (HCT-116), and cervical carcinoma (Hela), breast carcinoma (MCF-7). Compounds 5a, 5d, 5e and 9h showed a significant broad spectrum anti-proliferative activity against all tested cell lines. They were characterized by potent effect against breast cancer in particular with IC50 of 11.73, 8.56, 7.35 and 9.48 μM, respectively against Doxorubicin (IC50 4.17 μM). HSP90 ATPase activity inhibition assay were conducted where compound 5d exhibited the best IC50 with 1.58 μM compared to Tanespimycin (IC50 = 2.17 μM). Compounds 5a and 9h showed higher IC50 values of 3.21 and 3.41 μM, respectively. The effects of 5a, 5d and 9h on Her2 (a client proteins of HSP90) and HSP70 were evaluated in MCF-7 cells. All tested compounds were found to reduce Her2 protein expression levels and induce Hsp70 protein expression levels significantly, emphasizing that antibreast cancer effect is a consequence of HSP90 chaperone inhibition. Cell cycle analysis of MCF-7 cells treated with 5d showed cell cycle arrest at G2/M phase 38.89% and pro-apoptotic activity as indicated by annexin V-FITC staining by 22.42%. Molecular docking studies suggested mode of interaction to HSP90 via hydrogen bonding. ADME properties prediction of the active compounds suggested that they could be used as orally absorbed anticancer drug candidates.  相似文献   

8.
The metabolism and cytotoxicity of 2-hydroxy-4-methoxybenzophenone (HMB) in isolated rat hepatocytes and the xenoestrogenic activity of HMB and its metabolites in MCF-7 human breast cancer cells and an estrogen receptor competitive binding assay have been studied, respectively. The incubation of hepatocytes with HMB caused a concentration- and time-dependent decrease in cell viability, accompanied by loss of intracellular ATP and adenine nucleotide pools. HMB at a low-toxic level (0.25 mM) in the hepatocyte suspensions was converted enzymatically to 2,4-dihydroxybenzophenone (DHB) and a hydroxylated intermediate, which was tentatively identified as an isomer of 2,2prime prime or minute-dihydroxy-4-methoxybenzophenone (DHMB) as determined by mass spectroscopy coupled with HPLC. Furthermore, the parent compound and both intermediates were rapidly conjugated to glucuronides, whereas free unconjugated DHMB and 2,3,4-trihydroxybenzophenone (THB) were identified as trace intermediates. In another experiment, DHB and THB displaced competitively 17beta-estradiol bound to the recombinant human estrogen receptor alpha in a concentration-dependent manner: IC(50) of diethylstilbestrol and bisphenol A, which are known xenoestorogenic compounds, and DHB and THB was approximately 1 x 10(-8), 1 x 10(-5), 5 x 10(-5) and 5 x 10(-4) M, respectively. Further, DHB at concentrations from 10(-8) to 10(-6) M caused a concentration-dependent proliferation of MCF-7 cells. DHMB and THB at 10(-7) and 10(-6) M also elicited a slight increase in cell numbers, whereas HMB at concentrations from 10(-9) to 10(-4) M did not affect the cell proliferation. Based on the relative IC50 for the competitive binding and the proliferative effect on MCF-7 cells, it follows that in estrogenic potency, DHB>THB>DHMB. These results indicate that some hydroxylated intermediates such as DHB rather than the parent compound act as a xenoestrogen via biotransformation.  相似文献   

9.
Zhang Y  Vareed SK  Nair MG 《Life sciences》2005,76(13):1465-1472
Anthocyanidins, the aglycones of anthocyanins, impart brilliant colors in many fruits and vegetables. The widespread consumption of diets rich in anthocyanin and anthocyanidins prompted us to determine their inhibitory effects on human cancer cell proliferation. Five anthocyanidins, cyanidin (1), delphinidin (2), pelargonidin (3), petunidin (4) and malvidin (5), and four anthocyanins, cyanidin-3-glucoside, cyanidin-3-galactoside, delphinidin-3-galactoside and pelargonidin-3-galactoside were tested for cell proliferation inhibitory activity against human cancer cell lines, AGS (stomach), HCT-116 (colon), MCF-7 (breast), NCI H460 (lung), and SF-268 (Central Nervous System, CNS) at 12.5-200 microg/mL concentrations. The viability of cells after exposure to anthocyanins and anthocyanidins was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric methods. The anthocyanins assayed did not inhibit cell proliferation of cell lines tested at 200 microg/mL. However, anthocyanidins showed cell proliferation inhibitory activity. Malvidin inhibited AGS, HCT-116, NCI-H460, MCF-7 and SF-268 cell growth by 69, 75.7, 67.7, 74.7 and 40.5%, respectively, at 200 microg/mL. Similarly, pelargonidin inhibited AGS, HCT-116, NCI H460, MCF-7 and SF-268 cell growth by 64, 63, 62, 63 and 34%, respectively, at 200 microg/mL. At 200 microg/mL, cyanidin, delphinidin and petunidin inhibited the breast cancer cell growth by 47, 66 and 53%, respectively. This is the first report of tumor cell proliferation inhibitory activity by anthocyanidins.  相似文献   

10.
An efficient synthesis of substituted pyrido[2,3-d]pyrimidines was carried out and evaluated for in vitro anticancer activity against five cancer cell lines, namely hepatic cancer (HepG-2), prostate cancer (PC-3), colon cancer (HCT-116), breast cancer (MCF-7), and lung cancer (A-549) cell lines. Regarding HepG-2, PC-3, HCT-116 cancer cell lines, 7-(4-chlorophenyl)-2-(3-methyl-5-oxo-2,3-dihydro-1H-pyrazol-1-yl)-5-(p-tolyl)- pyrido[2,3-d]pyrimidin-4(3H)-one (5a) exhibited strong, more potent anticancer (IC50: 0.3, 6.6 and 7?µM) relative to the standard doxorubicin (IC50: 0.6, 6.8 and 12.8?µM), respectively. Kinase inhibitory assessment of 5a showed promising inhibitory activity against three kinases namely PDGFR β, EGFR, and CDK4/cyclin D1 at two concentrations 50 and 100?µM in single measurements. Further, a molecular docking study for compound 5a was performed to verify the binding mode towards the EGFR and CDK4/cyclin D1 kinases.  相似文献   

11.
A series of pyrazolyl-thiazolinone derivatives (E1-E36) have been designed and synthesized and their biological activities were also evaluated as potential EGFR and HER-2 kinase inhibitors. Thirty-four of the 36 compounds were reported for the first time. Among them, compound 2-(5-(4-bromophenyl)-3-p-tolyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (E28) displayed the most potent inhibitory activity (IC(50)=0.24μM for EGFR and IC(50)=1.07μM for HER-2). Antiproliferative assay results indicated that compound E28 owned high antiproliferative activity against MCF-7, B16-F10 and HCT-116 in vitro, with IC(50) value of 0.30, 0.54, and 0.70μM, respectively. Docking simulation was further performed to position compound E28 into the EGFR active site to determine the probable binding model. Based on the preliminary results, compound E28 with potent inhibitory activity in tumor growth would be a potential anticancer agent.  相似文献   

12.
A series of certain benzyl/phenethyl thiazolidinone-indole hybrids were synthesized for the study of anti-proliferative activity against A549, NCI-H460 (lung cancer), MDA-MB-231 (breast cancer), HCT-29 and HCT-15 (colon cancer) cell lines by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We found that compound G37 displayed highest cytotoxicity with IC50 value of 0.92 ± 0.12 µM towards HCT-15 cancer cell line among all the synthesized compounds. Moreover, compound G37 was also tested on normal human lung epithelial cells (L132) and was found to be safe in contrast to HCT-15 cells. The lead compound G37 showed significant G2/M phase arrest in HCT-15 cells. Additionally, compound G37 significantly inhibited tubulin polymerization with IC50 value of 2.92 ± 0.23 µM. Mechanistic studies such as acridine orange/ethidium bromide (AO/EB) dual staining, DAPI nuclear staining, annexinV/propidium iodide dual staining, clonogenic growth inhibition assays inferred that compound G37 induced apoptotic cell death in HCT-15 cells. Moreover, loss of mitochondrial membrane potential with elevated intracellular ROS levels was observed by compound G37. These compounds bind at the active pocket of the α/β-tubulin with higher number of stable hydrogen bonds, hydrophobic and arene-cation interactions confirmed by molecular modeling studies.  相似文献   

13.
In the current work, 12 novel 25-hydroxyprotopanaxadiol (25-OH-PPD) derivatives were synthesized by reacting with chloroacetyl chloride. And their in vitro antitumor activities were evaluated on six human tumor cell lines by MTT assay. The results demonstrated that, as compared with 25-OH-PPD, compounds 4, 6 and 7 exhibited higher cytotoxic activity on all tested cell lines. Of them, compound 4 showed strongly inhibition against MCF-7, HCT-116 and Lovo cells with IC50 values of 1.7, 1.6 and 2.1 μM, respectively. The IC50 values of compound 6 against HCT-116 and 7 against MCF-7 were the lowest (1.2 and 1.6 μM, respectively). It was also noted that compound 4 showed a 20- to 100-fold greater growth inhibition than ginsenoside-Rg3 (an anti-cancer regular drug in China). In conclusion, the data revealed that compounds 4, 6 and 7 were potential candidates for anti-tumor treatment and may be useful for the development of novel antiproliferative agents.  相似文献   

14.
Insulin receptors in transformed tissue are relatively resistant to down regulation by insulin, and although receptor downregulation reduces rapid onset biologic responses to insulin in normal tissue, this is not observed in tumor cells. The present study compares longterm insulin responses (thymidine incorporation and cell growth) in normal human fibroblasts with responses in human tumor cell lines (MCF-7, T-47D and HCT-8) to determine whether these responses are also resistant to the effects of receptor down regulation. Thymidine incorporation into fibroblasts was more responsive to insulin than was incorporation into tumor cells, although stimulation of uptake into fibroblasts was not paralleled by changes in cell replication. In contrast, physiological insulin concentrations inhibited, and high concentrations of insulin stimulated, thymidine incorporation and cell replication in MCF-7 and T-47D cells. All insulin concentrations inhibited thymidine incorporation in HCT-8 cells without affecting cell replication. The responsiveness of fibroblasts, MCF-7 and HCT-8 cells to insulin was unaltered by down regulation of insulin receptors prior to measuring thymidine incorporation, whereas receptor down regulation paradoxically increased the responsiveness of T-47D cells to insulin. Exposure of fibroblasts to 5 x 10(-8) M dexamethasone for 24h increased their responsiveness to insulin but did not influence the response of MCF-7 or HCT-8 cells, whereas insulin-stimulated incorporation of thymidine in T-47D cells was inhibited. Thus, receptor down regulation does not influence the longterm biologic response to insulin in normal cells, and paradoxically increases responsiveness in one of three tumor cell lines. These changes may contribute to the well-described stimulatory effects of insulin on tumor cell growth and inhibition of this response with dexamethasone may be relevant to cancer treatment programs.  相似文献   

15.
A series of artemisinin derivatives with MDR reversal activity were designed and synthesized. All hybrids were screened to anticancer activities against four human cancer cell lines (A549, MCF-7, HepG-2, MDA-MB-231) and normal human hepatic cell (L02) in vitro. Most of the new compounds showed higher anticancer activities than artemisinin, among which compounds 11a and 11c displayed superior potency with IC50 6.78?μM and 5.25?μM against MCF-7, respectively. The further research indicated that the most potent 11c induced cell cycle arrest at G2 phase in MCF-7. Additionally, compound 11c showed remarkable MDR reversal activity which reversed adriamycin against MCF-7/ADR cells with IC50 0.76?μM.  相似文献   

16.
A novel curcumin mimic library (14a-14h and 15a-15h) possessing variously substituted benzimidazole groups was synthesized through the aldol reaction of (E)-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one (7) or (E)-4-(3-hydroxy-4-methoxyphenyl)but-3-en-2-one (13) with diversely substituted benzimidazolyl-2-carbaldehyde (12a-12h). The MTT assay of the cancer cells MCF-7, SH-SY5Y, HEP-G2, and H460 showed that compound 14c with IC(50) of 1.0 and 1.9μM has a strong inhibitory effect on the growth of SH-SY5Y and Hep-G2 cells, respectively, and that compound 15h with IC(50) of 1.9μM has a strong inhibitory effect on the growth of MCF-7 cancer cells.  相似文献   

17.
Estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell, or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of Medrogestone (Prothil) on 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities of the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. Using physiological doses of estrone ([3H]-E1: 5 x 10(-9) mol/l) this estrogen is converted in a great proportion to E2 in both cell lines. After 24 h of the cell culture, Medrogestone significantly inhibits this transformation in a dose-dependent manner by 39% and 80% at 5 x 10(-8) M and 5 x 10(-5) M, respectively in T-47D cells; the effect is less intense in MCF-7 cells: 25% and 55% respectively. The IC50 values are 0.45 micromol/l in T-47D and 17.36 micromol/l in MCF-7 cells. It is concluded that the inhibition provoked by Medrogestone on the reductive 17beta-HSD activity involved in the local biosynthesis of the biologically active estrogen estradiol, may constitute a new therapeutic approach for the treatment of breast cancer.  相似文献   

18.
A series of substituted xanthenes was synthesized and screened for activity using DU-145, MCF-7, and HeLa cancer cell growth inhibition assays. The most potent compound, 9g ([N,N-diethyl]-9-hydroxy-9-(3-methoxyphenyl)-9H-xanthene-3-carboxamide), was found to inhibit cancer cell growth with IC50 values ranging from 36 to 50 μM across all three cancer cell lines. Structure–activity relationship (SAR) data is presented that indicates additional gains in potency may be realized through further derivatization of the compounds (e.g., the incorporation of a 7-fluoro substituent to 9g). Results are also presented that suggest the compounds function through a unique mechanism of action as compared to that of related acridine and xanthone anticancer agents (which have been shown to intercalate into DNA and inhibit topoisomerase II activity). A structural comparison of these compounds suggests the differences in function may be due to the structure of the xanthene heterocycle which adopts a nonplanar conformation about the pyran ring.  相似文献   

19.
Twelve analogs of makaluvamines have been synthesized. These compounds were evaluated for their ability to inhibit the enzyme topoisomerase II. Five compounds were shown to inhibit topoisomerase catalytic activity comparable to two known topoisomerase II targeting control drugs, etoposide and m-AMSA. Their cytotoxicity against human colon cancer cell line HCT-116 and human breast cancer cell lines MCF-7 and MDA-MB-468 has been evaluated. Four makaluvamine analogs exhibited better IC(50) values against HCT-116 as compared to control drug etoposide. One analog exhibited better IC(50) value against HCT-116 as compared to m-AMSA. All 12 of the makaluvamine analogs exhibited better IC(50) values against MCF-7 and MDA-MB-468 as compared to etoposide as well as m-AMSA.  相似文献   

20.
A series of novel 4beta-[(4-substituted)-1,2,3-triazol-1-yl]podophyllotoxin derivatives were synthesized by employing Cu(I)-catalyzed click chemistry and evaluated for their anticancer activity against a panel of seven human cancer cell lines (HT-29, HCT-15, 502713, HOP-62, A-549, MCF-7, and SF-295). The compounds 9b, 9c, 9e, 9f, and 9h showed significant cytotoxic activities especially against HT-29, HCT-15, 502713 cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号