首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The respiratory emission of CO2 from roots is frequently proposed as an attractant that allows soil-dwelling insects to locate host plant roots, but this role has recently become less certain. CO2 is emitted from many sources other than roots, so does not necessarily indicate the presence of host plants, and because of the high density of roots in the upper soil layers, spatial gradients may not always be perceptible by soil-dwelling insects. The role of CO2 in host location was investigated using the clover root weevil Sitona lepidus Gyllenhall and its host plant white clover (Trifolium repens L.) as a model system. Rhizochamber experiments showed that CO2 concentrations were approximately 1000 ppm around the roots of white clover, but significantly decreased with increasing distance from roots. In behavioural experiments, no evidence was found for any attraction by S. lepidus larvae to point emissions of CO2, regardless of emission rates. Fewer than 15% of larvae were attracted to point emissions of CO2, compared with a control response of 17%. However, fractal analysis of movement paths in constant CO2 concentrations demonstrated that searching by S. lepidus larvae significantly intensified when they experienced CO2 concentrations similar to those found around the roots of white clover (i.e. 1000 ppm). It is suggested that respiratory emissions of CO2 may act as a 'search trigger' for S. lepidus, whereby it induces larvae to search a smaller area more intensively, in order to detect location cues that are more specific to their host plant.  相似文献   

2.
The metabolic origin and emission by the leaves of the tropospheric trace gas acetaldehyde were examined in 4-month-old poplar trees (Populus tremula x P. alba) cultivated under controlled environmental conditions in a greenhouse. Treatments which resulted in increased ethanol concentration of the xylem sap caused significantly enhanced rates of acetaldehyde and ethanol emission by the leaves. Leaves fed [14C]-ethanol via the transpiration stream emitted [<14C]-acetaldehyde. These findings suggest that acetaldehyde in the leaves is synthesized by a metabolic pathway that operates in the opposite direction of alcoholic fermentation and results in oxidation of ethanol. Enzymatic studies showed that this pathway is mediated either by alcohol dehydrogenase (ADH; EC 1.1.1.1) or catalase (CAT; EC 1.11.1.6), both constitutively present in the leaves of poplar trees. Labelling experiments with [14C]-glucose indicated that the ethanol delivered to the leaves by the transpiration stream is produced in anaerobic zones of submersed roots by alcoholic fermentation. Anoxic conditions in the rhizosphere caused by flooding of the root system resulted in an activation of alcoholic fermentation and led to significantly increased ethanol concentrations in the xylem sap. These results support the hypothesis that acetaldehyde emitted by the leaves of trees is derived from xylem transported ethanol which is synthesized during alcoholic fermentation in the roots.Keywords: Acetaldehyde, emission, ethanol, anaerobiosis, Populus tremula x P. alba   相似文献   

3.
Most plant‐based emissions of volatile organic compounds are considered mainly temperature dependent. However, certain oxygenated volatile organic compounds (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in the xylem sap. Yet further understanding on the role of transport has been lacking until present. We used shoot‐scale long‐term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of 3 water‐soluble OVOCs: methanol, acetone, and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the 3 OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of the temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in the xylem sap from their sources in roots and stem to leaves and to ambient air.  相似文献   

4.
The role of atmospheric oxygen on root water absorption in Helianthus annuus . The effect of atmospheric anoxia on root water absorption was studied. The experiments were carried out on intact young sunflowers in controlled temperature, light and gas environment; roots were kept in aerated nutrient solution at constant temperature. The evolution of root water absorption and transpiration rate was measured continuously. Before the experiment, the plant was preconditioned at a high transpiration rate by illumination or by CO2 free air in darkness. Then the atmospheric oxygen was suppressed for 1 h, after which the normal conditions were restored.
In anoxia and darkness, the root water absorption cannot balance transpiration, so that an important water stress develops in the plant; the light compensates this effect through the photosynthetic oxygen. The supply of oxygen, in darkness or in light, immediately removes inhibition of stomatal closure and of root water absorption. Two mechanisms control water absorption by roots: the fast one occurs in the leaves and the slower one cannot develop without the root system.  相似文献   

5.
Diurnal pattern of acetaldehyde emission by flooded poplar trees   总被引:7,自引:0,他引:7  
The emission of the tropospheric trace gas acetaldehyde was determined in leaves of 4-month-old poplar trees ( Populus tremula × P. alba ) grown under controlled environmental conditions in a greenhouse. Using a dynamic cuvette system together with a high sensitivity laser-based photoacoustic detection unit, rates of acetaldehyde emission were measured with the high time resolution of about 15 min. Submergence of the roots resulted in the emission of acetaldehyde by the leaves. The emission increased linearly before reaching more or less steady-state values (ca 350 nmol m−2 min−1; ca 470 ng g−1 dry weight min−1) after approximately 6 h. Prolonged flooding of poplar trees resulted in a clear diurnal rhythm of acetaldehyde emission. The emission rates decreased when the light was switched off in the evening and peaked in the morning after the light was turned on again. This pattern significantly correlated with diurnal rhythms of stomatal conductance, photosynthesis, transpiration and with the concentrations of ethanol, the assumed precursor of acetaldehyde, in the xylem sap of flooded poplar trees. It may be concluded that under conditions of diminished stomatal conductance, acetaldehyde emission declines because its diffusive flux is reduced. Alternatively, reduced transpiration may decrease ethanol transport from the roots to the shoots and appreciable amounts of the acetaldehyde precursor ethanol are lacking in the leaves. The present results support the view that acetaldehyde emitted by the leaves of plants is derived from ethanol produced by alcoholic fermentation in submerged roots and transported to the leaves with the transpiration stream.  相似文献   

6.
小叶榕气生根气体交换特征及影响因子研究   总被引:1,自引:0,他引:1  
用LI-6400XT便携式光合仪测定了小叶榕(Ficus microcarpa L. f.)气生根的气体交换特征。结果表明气生根具有呼吸、蒸腾作用和空气吸湿作用。影响气生根呼吸作用的因素为年龄>空气温度>光强>相对湿度;影响蒸腾作用的因素为年龄>相对湿度>空气温度>光照。年龄小的气生根的呼吸和蒸腾作用较强,年龄大的尤其是木质化程度较高的气生根的呼吸作用较小,水分的释放(蒸腾作用)转变为水分的吸收(吸湿作用)。年龄小的气生根的CO2交换率与温度呈线性关系,温度越高,CO2交换率越大,呼吸越强;H2O交换率与相对湿度呈线性关系,相对湿度越大,H2O交换率越小,蒸腾越弱;年龄大的成熟气生根的H2O交换率与空气相对湿度呈线性关系,相对湿度越大,H2O交换率越小,蒸腾越小。  相似文献   

7.
Tree stems are an overlooked source of volatile organic compounds (VOCs). Their contribution to ecosystem processes and total VOC fluxes is not well studied, and assessing it requires better understanding of stem emission dynamics and their driving processes. To gain more mechanistic insight into stem emission patterns, we measured monoterpene, methanol and acetaldehyde emissions from the stems of mature Scots pines (Pinus sylvestris L.) in a boreal forest over three summers. We analysed the effects of temperature, soil water content, tree water status, transpiration and growth on the VOC emissions and used generalized linear models to test their relative importance in explaining the emissions. We show that Scots pine stems are considerable sources of monoterpenes, methanol and acetaldehyde, and their emissions are strongly regulated by temperature. However, even small changes in water availability affected the emission potentials: increased soil water content increased the monoterpene emissions within a day, whereas acetaldehyde and methanol emissions responded within 2–4 days. This lag corresponded to their transport time in the xylem sap from the roots to the stem. Moreover, the emissions of monoterpenes, methanol and acetaldehyde were influenced by the cambial growth rate of the stem with 6–10-day lags.  相似文献   

8.
Water flux of transpiration stream in an intact stem of the 10 leaf stage cucumber plant (Cucumis sativus L. cv. Chojitsu-Ochiai) was measured by a novel system of heat flux control method with a resolution of 1 × 10−3 grams per second and a time constant of 1 minute; two heat flux control sensors were attached to the seventh internode and the stem base. The transpiration stream responded clearly to leaf transpiration and root water absorption when the plant was exposed to light, and the water flux at the stem base corresponded to the transpiration rate per plant in steady state. Root water absorption lagged about 10 minutes behind leaf transpiration. Dynamics of water fluxes were affected by the lag of water absorption in roots, and temporary water loss caused by rapid increase in leaf transpiration was buffered by about 5% of the water content in the stem.  相似文献   

9.
BACKGROUND AND AIMS: Claims that submerged roots of alder and other wetland trees are aerated by pressurized gas flow generated in the stem by a light-induced thermo-osmosis have seemed inconsistent with root anatomy. Our aim was to seek a verification using physical root-stem models, stem segments with or without artificial roots, and rooted saplings. METHODS: Radial O2 loss (ROL) from roots was monitored polarographically as the gas space system of the models, and stems were pressurized artificially. ROL and internal pressurization were also measured when stems were irradiated and the xylem stream was either CO2 enriched or not. Stem photosynthesis and respiration were measured polarographically. Stem and root anatomy were examined by light and fluorescence microscopy. KEY RESULTS: Pressurizing the models and stems to 相似文献   

10.
Rates of boron (B) accumulation and/or water utilization of3 month-old sugarcane plants were altered by changes in temperature,relative humidity, light intensity and duration of exposureto light. The effects of the environment on boron accumulationwere not directly dependent upon effects on water utilization.Boron accumulation was affected more than water uptake by increasingroot and air temperatures from 8°C to 37°C, and by raisingthe pH of the external solution from 5.7 to 7.0. Contrarily,water utilization decreased more than B accumulation when therelative humidity was increased from 30±5% to 95±5%,when light intensity was decreased or daily exposure to lightwas shortened and when the plants were pretreated with 5x10–5M phenyl mercuric acetate, an anti-transpirant. The absorption of B by roots was experimentally separated fromits subsequent translocation to the shoots. Absorption of Bby roots was at least partially under metabolic control, sinceuptake from a 2 mg/liter B solution could occur against a concentrationgradient. Translocation of B from the roots to the shoot occurredpassively in the transpiration stream. 1 Journal Series No. 1427 of the Hawaii Agricultural ExperimentStation. (Received March 2, 1972; )  相似文献   

11.
12.
Volatile organic compound (VOC) emissions from Norway spruce ( Picea abies ) saplings were monitored in response to a temperature ramp. Online measurements were made with a proton transfer reaction – mass spectrometer under controlled conditions, together with plant physiological variables. Masses corresponding to acetic acid and acetone were the most emitted VOCs. The emission rates of m137 (monoterpenes), m59 (acetone), m33 (methanol), m83 (hexanal, hexenals), m85 (hexanol) and m153 (methyl salicylate, MeSa) increased exponentially with temperature. The emission of m61 (acetic acid) and m45 (acetaldehyde), however, increased with temperature only until saturation around 30°C, closely following the pattern of transpiration rates. These results indicate that algorithms that use only incident irradiance and leaf temperature as drivers to predict VOC emission rates may be inadequate for VOCs with lower H, and consequently higher sensitivity to stomatal conductance.  相似文献   

13.
Xylem pressure and its relative response to the imposition ofan external osmotic stress (the so-called radial reflectioncoefficient) were recorded in roots of intact maize plants usingthe xylem pressure probe technique. Consecutive insertion oftwo probes into the same xylem vessel or into adjacent vesselsof intact roots of plants exposed to high light intensity andsalt stress under laboratory conditions showed that the xylemtension was not changed by vessel probing. It was also shownby using the double probe approach that the plants were capableof overcoming artificially induced leakages. This and otherevidence reported in the literature convincingly demonstratedthat the probe accurately reads xylem pressure and xylem pressureresponses to osmotic stress. Additional experiments were performedon plants grown in a greenhouse at a subtropical latitude. Underthese conditions the plants were exposed to strong diurnal fluctuationsin light intensity, relative humidity and temperature. The resultsshowed that the absolute xylem pressure in the roots of untreatedplants decreased with increasing transpiration rate from positivevalues in the early morning to negative values around noon (averagevalue –0.15 MPa; maximum negative value –0.57 MPa).As the day progressed and the transpiration rate decreased,xylem pressure increased again to positive values. Correspondingly,the radial reflection coefficient for NaCI increased from aboutzero in the early morning to about unity at noon when transpirationreached its highest value and decreased again to very low valuestowards the evening. The data raise questions concerning conclusionsabout the mechanism of water transport in intact roots drawnfrom the low radial reflection coefficients measured on excisedroots using the root pressure probe. Key words: Xylem pressure probe, osmotic stress, reflection coefficient, transpiration, diurnal changes  相似文献   

14.
Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat‐stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat‐stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.  相似文献   

15.
A large field wind tunnel was used to compare four types of CO2-baited mosquito traps. This study compared the plume structure and concentration of CO2 emitted by each trap, flow of suction into the trapping systems, flow of CO2 being released, trap shape and configuration, differences in visual appearance, and differences in temperature and humidity of emissions at the source of CO2 compared to ambient air. The structure of the CO2 plumes emitted by each trap differed considerably. All four plumes were turbulent, causing the concentration of CO2 within several metres of the source to attenuate to between 375 and 875 p.p.m. The Encephalitis Virus Surveillance (EVS) trap emitted concentrations of CO2 exceeding 20,000 p.p.m., the detection limits of our equipment, whereas the Mosquito Magnet Freedom (MMF), Mosquito Magnet Liberty (MML) and Mosquito Magnet X (MMX) traps released CO2 at peaks of about 3500, 7200 and 8700 p.p.m., respectively. The MMX trap produced the greatest air velocity at both the suction inlet and CO2 outlet, followed by the MMF, MML and the EVS traps, respectively.  相似文献   

16.
The objective of this study was to assess effects of different light intensities on shoot growth, root development and allocation of root-borne solutes via the transpiration stream to various shoot parts of young wheat plants (Triticum aestivum L.). Hydroponic culture allowed direct access to the roots and shoots throughout the experiment. Under low light intensity (100?μmol photons m?2?s?1), shoot growth was restricted, less (but larger) leaves were produced at the main shoot and only a few tillers became visible as compared to plants under high light intensity (380?μmol photons m?2?s?1). The root system was indirectly also affected by the illumination of the aerial parts. A larger number of shorter roots were produced under high light leading to a denser root system, while only a small number of longer roots were present under low light. The distribution of 54Mn (xylem-mobile, but essentially phloem-immobile in wheat) from the roots to the shoot lead to the conclusion that light regime strongly influences the distribution of root-borne solutes within the shoots. Labels introduced into the roots may allow a deeper insight into the transfer of solutes from the root system to the various shoot parts under different light regimes.  相似文献   

17.
高浓度二氧化碳对植物影响的研究进展   总被引:19,自引:0,他引:19  
工业革命后全球大气CO2浓度持续上升,不仅对全球气候的变迁产生重大影响,而且对植物的形态、水分利用、蛋白质合成、光合、抗性、生长及生物量等都有不同程度的影响。高浓度CO2促进植物根、幼苗的生长,叶片增厚,降低气孔密度、气孔导度及蒸腾速率,增加水分利用效率、作物的产量及生物量,促进乙烯生物合成,增强植物的抗氧化能力。不同光合途径(C3、C4及CAM)及不同植被类型的植物对高浓度CO2的响应不同。长期和短期的高浓度CO2处理,植物响应方式有很大的差异,如短期高CO2处理使光合能力增强,而长期处理则使光合能力下调。  相似文献   

18.
? An unbiased partitioning of autotrophic and heterotrophic components of soil CO(2) efflux is important to estimate forest carbon budgets and soil carbon sequestration. The contribution of autotrophic sources to soil CO(2) efflux (F(A)) may be underestimated during the daytime as a result of internal transport of CO(2) produced by root respiration through the transpiration stream. ? Here, we tested the hypothesis that carbon isotope composition of soil CO(2) efflux (δ(FS)) in a Eucalyptus plantation grown on a C(4) soil is enriched during the daytime, which will indicate a decrease in F(A) during the periods of high transpiration. ? Mean δ(FS) of soil CO(2) efflux decreased to -25.7‰ during the night and increased to -24.7‰ between 11:00 and 15:00 h when the xylem sap flux density was at its maximum. ? Our results indicate a decrease in the contribution of root respiration to soil CO(2) efflux during the day that may be interpreted as a departure of root-produced CO(2) in the transpiration stream, leading to a 17% underestimation of autotrophic contribution to soil CO(2) efflux on a daily timescale.  相似文献   

19.
20.
We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号