首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The binding of peptide antitumor antibiotics, BBM-928A and echinomycin, to superhelical PM2 DNA and the effects of the resulting conformational changes of DNA on the DNA-degradative activity of two related antitumor antibiotics, bleomycin A2 and phleomycin D1, have been studied. The bifunctional intercalative mode of the DNA binding of BBM-928A concluded previously from viscometric and fluorometric studies has been confirmed by gel electrophoretic analysis. Under the employed electrophoretic conditions, DNA-bound BBM-928A showed little dissociation whereas echinomycin and ethidium bromide showed partial and nearly complete dissociation, respectively. BBM-928A induced neither single-strand nor double-strand breaks in DNA. Competitive binding studies by fluorescence changes suggested that binding sites on DNA molecules for BBM-928A (or echinomycin) may differ from those for ethidium bromide, since binding to DNA by the two drugs was not competitive even at saturating concentrations. The lack of such a competition between the two drugs is not consistent with the neighbor-exclusion principle. The DNA-degradative activity of both bleomycin A2 and phleomycin D1 increased with the removal of the negative superhelicity of DNA by the BBM-928A intercalation and decreased with the formation of positive superhelical turns induced by high concentrations of BBM-928A. Thus the degradative activity of both bleomycin A2 and phleomycin D1 is sensitive in a similar manner to the degree of superhelicity rather than the double helicity of DNA, although there are differences between these two drugs in interaction with DNA.  相似文献   

2.
Electron spin resonance spectra of DNA labeled with each of four spin-labeling compounds have been studied to detect interaction between the antibiotic bleomycin and DNA. Only one of these labels, compound IV, resulted in a modified spectrum when bound to DNA and the latter was subjected to bleomycin. This property has been used to monitor DNA-bleomycin interactions under physiological and hyperthermic conditions. Bleomycin produced an increase in rotational correlation time of the residue bound to DNA at 37 degrees C and a significantly higher increase at 43 degrees C. Some effect was still detected with bleomycin at 37 degrees C after preheating at 43 degrees C. Parallel studies have revealed enhanced binding of 59Fe-bleomycin to DNA during and after hyperthermic treatment.  相似文献   

3.
Induced circular dichroism of DNA-dye complexes   总被引:4,自引:0,他引:4  
C H Lee  C T Chang  J G Wetmur 《Biopolymers》1973,12(5):1098-1122
The binding of methylene blue, proflavine, and ethidium bromide with DNA has been studied by spectrophotometric titration. Methylene blue and proflavine or methylene blue and ethidium bromide were simultaneously titrated by DNA. The results indicate that all of these dyes compete for the same bindine sites. The binding properties are discussed in terms of symmetry. The optical properties of the dye–DNA complexes have been studied as a function of DNA/dye ratio. The induced circular dichriosm due to dye–dye interaction was measured at low dye/DNA ratios for cases involving both the same dye and different dyes. A positive Cotton effect for DNA–proflavine complex may be induced at 465 mμ by eithr proflavine or ethidium bromide, whereas a netgative Cotton effect at 465 mμ may be induced by methylene blue. The limiting circular dichroism, with no dye–dye interaction, and the induced circular dichroism spectra are discussed in terms of symmetry rules.  相似文献   

4.
The solution complexes of ethidium bromide with nine different deoxydinucleotides and the four self-complementary ribodinucleoside monophosphates as well as mixtures of complementary and noncomplementary deoxydinucleotides were studied as models for the binding of the drug to DNA and RNA. Ethidium bromide forms the strongest complexes with pdC-dG and CpG and shows a definite preference for interaction with pyrimidine–purine sequence isomers. Cooperativity is observed in the binding curves of the self-complementary deoxydinucleotides pdC-dG and pdG-dC as well as the ribodinucleoside monophosphates CpG and GpC, indicating the formation of a minihelix around ethidium bromide. The role of complementarity of the nucleotide bases was evident in the visible and circular dichroism spectra of mixtures of complementary and noncomplementary dinucleotides. Nuclear magnetic resonance measurements on an ethidium bromide complex with CpG provided evidence for the intercalation model for the binding of ethidium bromide to double-stranded nucleic acids. The results also suggest that ethidium bromide may bind to various sequences on DNA and RNA with significantly different binding constants.  相似文献   

5.
The interaction of ethidium bromide with single-stranded synthetic and natural polynucleotides at high temperatures (t = 70 degrees C) and low pH values (pH 3.0) was studied. The isotherms of adsorption of ethidium bromide on single-stranded DNA were obtained. Two modes of binding of single-stranded DNA, strong and weak, were revealed. The values of the corresponding constants of interaction of this ligand and the number of bases per one binding site were determined.  相似文献   

6.
T Ono  T Nakabayashi 《Biken journal》1980,23(4):205-209
Intraperitoneal injection of 10 mg/Kg bleomycin into mice 24 h after inoculation with Trypanosoma gambiense or Trypanosoma evansi, reduced the incidence of infection 62.1%, and 95.2%, respectively. No parasitemia was not found in these mice. Treatment of mice with parasitemia with 30 mg/Kg of bleomycin decreased the number of parasites within about 5 h and caused complete cure without relapse in 45% and 75% of mice infected with T. gambiense and T. evansi, respectively. Treatment of mice infected with T. gambiense with bleomycin in combination with ethidium bromide was highly effective and resulted in a high incidence of complete cure, even in heavily infected mice. The mode of action of bleomycin and ethidium bromide on trypanosomes in relation to p-rosaniline resistance is discussed.  相似文献   

7.
The mechanisms of interaction between non-ionic or cationic surfactants with Escherichia coli K-12 cell membranes were studied using an approach based on the registration of changes in the membrane permeability to ethidium bromide, a fluorescent dye for nucleic acids. Triton X-100, a non-ionic detergent, was shown to exert no effect on the permeability of intact cell membranes. Triton X-100 interacted with the bacteria only after treatment with EDTA, a complexing agent for bivalent cations. Cetyltrimethyl ammonium bromide increased the permeability to ethidium bromide and the action of this cationic detergent did not require the pretreatment with the complexing agent. SDS, an anionic detergent, damaged E. coli K-12 and this could be registered by the lowering of intensity of light scattering by the bacterial suspension. The surface charge of E. coli K-12 cells was shown to influence the interaction of ionic detergents with bacterial cell membranes. Its variation by changing the pH of the incubation medium did not make E. coli K-12 sensitive to Triton X-100.  相似文献   

8.
Aspects of membrane stucture and functions were studied in ethidium bromide resistant cells. Submitochondrial particles were solubilized and electrophoresed. The gel patterns, representing mitochondiral membrane proteins, demonstrated qualitative and quantitative alterations in mitochondrial preparations derived from virus-transformed cells and ethidium bromide resistant cells as compared to the control cells. The plasma membrane glycoproteins were labelled by the sodium borohydride method. The glycoporteins were released with Triton X-100 and electrophoresed. Fluorograms of the gels demonstratred some marked differences between the ethidium bromide resistant cells and their parental strain. The observed alterations in the membrane glycoproteins did not result in altered glucose transport properties or in the elution patterns of plasma membrane glycopeptides as analyzed by Sephadex G-50 chromatography. Dye uptake and binding studies with intact parental and drug resistant cells and their isolated mitochondria demonstrated no alteration of the membrane permeability or the number of binding sites for ethidium bromide. Similar results were also obtained with a cyanine dye. This latter finding was significant in that it permitted one to exclude dye exclusion as a mechanism for ethidium bromide resistance.  相似文献   

9.
Summary The DNA-binding drug, bleomycin, has a profound effect on neural repair following selective glial disruption by ethidium bromide. The contribution of the granule-containing cells (which normally appear in the early stages of repair) is greatly reduced, the restoration of the blood-brain barrier is delayed and the ultrastructural organization of the reorganising perineurium is dramatically changed. The aberrant perineurial structure and function observed in the presence of bleomycin are postulated to result from the effects of the drug on haemocytes which, together with endogenous reactive cells, contribute to the normal process of glial repair.  相似文献   

10.
Bleomycin is an anti-tumor agent whose cytotoxicity is related to the introduction of both single-stranded and double-stranded breaks in cellular DNA. In an assay using isolated nuclei, low levels of ethidium bromide substantially increased bleomycin induced release of nuclear chromatin. Treatment of mouse L1210 leukemia cells in vitro with low levels of ethidium bromide followed 1 hr later by bleomycin produced a synergistic effect that was 8 fold greater than that expected from the additive cytotoxicity of each drug alone. Interestingly, when the order of drug addition was reversed the drug synergism was much reduced (2 fold). The combination of DNA unwinding and strand scission agents may represent a novel and rational approach to the chemotherapy of cancer.  相似文献   

11.
The interaction of ethidium bromide, a fluorescent dye, with Escherichia coli cells was studied. The envelope of intact cells was shown to be impermeable for ethidium bromide molecules. The dye penetrated however into E. coli spheroplasts. The barrier properties of the cell envelope against ethidium bromide were ruptured if the cells were treated with EDTA. The results suggest that the outer membrane serves as a principal barrier against penetration of ethidium bromide inside the cells while the cytoplasmic membrane of E. coli is permeable for the dye.  相似文献   

12.
Cell lines resistant to ethidium bromide have been developed from cultured mammalian BHK21/C13 cells and these same cells transformed by Rous sarcoma virus (C13/B4). Cells resistant to 2 micrograms ethidium bromide per milliliter have been cloned. One clone of the control and one of the virus-transformed cell lines has been employed for characterization. The resistant cells, in the presence of 2 micrograms ethidium bromide/ml, grow at approximately the same rate as the untreated parental cells. The control cells possess a "normal" karyotype (44 chromosomes), while the corresponding ethidium bromide mutant has a reduced chromosome number of 41 and a number of translocations. The mitochondria displayed morphological alterations compared to the parental lines during the transition phase prior to the isolation of the ethidium bromide-resistant cells. The mitochondria of the ethidium bromide-resistant mutants appear somewhat enlarged with a normal morphology. The effect of ethidium bromide on selected respiratory enzymes in normal and virus-transformed ethidium bromide-resistant baby hamster kidney cells was determined. Ethidium bromide-resistant cells exhibited a depressed level of cytochrome aa3. This depression could not be reversed by growth in ethidium bromide-free media. Ethidium bromide-resistant cells possessed the same cytochrome b, c, and c1 levels per cell as their corresponding parental lines. Purified mitochondria isolated from virus-transformed ethidium bromide-resistant cells exhibited a depression in cytochrome oxidase-specific activity, while the ethidium bromide-resistant control cells did not. All cell lines studied showed a depression in NADH-ferricyanide and NADH-cytochrome c reductase-specific activities relative to their parental BHK21/C13 cells. No increase was observed in virus-transformed ethidium bromide-resistant cells. Ethidium bromide-resistant control cells exhibited a two-fold increase in oligomycin-insensitive adenosine triphosphatase activity relative to their parental cells. All of the cell lines studied possessed equivalent oligomycin-sensitive adenosine triphosphatase-specific activity except for the virus-transformed, dye-resistant mutant, whose activity was increased.  相似文献   

13.
Copper(II) complexes (Cu-L, L=N,N'-dialkyl-1,10-phenanthroline-2,9-dimethanamine) were synthesized and characterized by elemental analyses, IR spectra and conductance measurement. The interaction of the copper(II) complex with calf thymus DNA was studied by means of UV melting experiments, fluorescence spectra and circular dichroic spectra. Using ethidium bromide as a fluorescence probe, the binding mode of the complexes Cu-L with calf-thymus DNA was studied spectroscopically. The results indicate that the complexes Cu-L perhaps interact with calf-thymus DNA by both intercalative and covalent binding. Kinetics of binding of the cupric complexes to DNA was studied for the first time using ethidium bromide as a fluorescence probe with stopped-flow spectrophotometer under pseudo-first-order condition. The stronger binding of two steps in the process of the complexes Cu-L interacting with DNA was observed, and the probable interaction process was discussed in detail. The corresponding k(obs) and E(a) of binding to DNA (where k(obs) is the observed pseudo-first-order rate constant, E(a) is the observed energy of activation) were obtained.  相似文献   

14.
Distamycin is a potent, wide-spectrum inhibitor of the breaking of both free and intranuclear DNA with DNAse I and with own nuclear nucleases. It compares very favourably with actinomycin D, proflavin and ethidium bromide, especially in the inhibition of DNAse I action in the nuclei. This seems likely to be due to partial overlapping of the binding sites of the nuclei with chromatin proteins in contrast to distamycin that interacts with a minor furrow of DNA being blocked to a less extent by proteins. The DNA-tropic agents under test exert no qualitative effect on the kinetics of intranuclear DNA splitting by DNAse I. Carminomycin and bleomycin are the least effective inhibitors in all the systems depicted.  相似文献   

15.
Five N10-substituted phenoxazines having different R groups and -Cl substitution at C-2 were found to bind to calf -thymus DNA and plasmid DNA with high affinity as seen from by UV and CD spectroscopy. The effect of phenoxazines on DNA were studied using DNA-ethidium bromide complexes. Upon addition of phenoxazines, the ethidium bromide dissociated from the complex with DNA. The binding of phenoxazines to plasmid PUC18 reduced ethidium bromide binding as seen from the agarose gel electrophoresis. Butyl, and propyl substituted phenoxazines were able to release more ethidium bromide compared with that of acetyl substitution. Addition of phenoxazines also enhanced melting temperature of DNA.  相似文献   

16.
We studied the interaction of ethidium bromide with rye and calf thymus chromatin. Both types of chromatin have the same dye accessibility, which is about 50% of that of DNA. From this result we conclude that the molecular structure of these two chromatins is similar. For rye, the extraction of H1 produces no change in the binding of ethidium bromide. The subsequent extraction of H2A and H2B produces a 14% increase in the binding, and the removal of H3 and H4, another 54% increase. At this stage, the number of binding sites is still less than that of DNA. This is presumably due to the presence of some tightly bound non-histones. Thus, the arginine-rich histones and the tightly bound non-histones are most responsible for limiting the binding of ethidium bromide to rye chromatin.  相似文献   

17.
Puchkov EO  McCarren M 《Biofizika》2011,56(4):661-667
The intracellular location of nucleic acid intercalators (NAI) in live (not fixed) Saccharomyces cerevisiae cells has been studied using fluorescence microscopy combined with computer pseudospectral image analysis. Three NAI: the anthracycline anticancer drug doxorubicin and the nucleic acid dyes ethidium bromide (E) and 4',6-diamidino-2-phenylindole (DAPI) were used. All three NAI were shown to be localized in nuclei and mitochondria. In contrast to DAPI, which interacted only with DNA, a large fraction of doxorubicin and ethidium bromide apparently bound to mitochondrial membranes. Upon combined application, a competition between these intercalators for binding sites in the nuclear and mitochondrial DNA occurred. It was concluded that this approach may be used in designing new DNA-targeted drugs and in preliminary studies of their interaction with eukaryotic cells.  相似文献   

18.
Five N10‐substituted phenoxazines having different R groups and –Cl substitution at C‐2 were found to bind to calf –thymus DNA and plasmid DNA with high affinity as seen from by UV and CD spectroscopy. The effect of phenoxazines on DNA were studied using DNA‐ethidium bromide complexes. Upon addition of phenoxazines, the ethidium bromide dissociated from the complex with DNA. The binding of phenoxazines to plasmid PUC18 reduced ethidium bromide binding as seen from the agarose gel electrophoresis. Butyl, and propyl substituted phenoxazines were able to release more ethidium bromide compared with that of acetyl substitution. Addition of phenoxazines also enhanced melting temperature of DNA.  相似文献   

19.
The intracellular location of nucleic acid intercalators (NAI) in native (not fixed) Saccharomyces cerevisiae cells has been studied using fluorescence microscopy combined with computer pseudospectral image analysis. Three NAI: anthracycline anticancer drug doxorubicin and nucleic acid dyes ethidium bromide and 4′,6-diamidino-2-phenylindole (DAPI) were used. All three NAI were shown to be localized in nuclei and mitochondria. In contrast to DAPI, which interacted only with DNA, a large fraction of doxorubicin and ethidium bromide apparently bound to mitochondrial membranes. Upon combined application, competition between these intercalators for binding sites in the nuclear and mitochondrial DNA occurred. It was concluded that this approach may be used in designing new DNA-targeted drugs and in preliminary studies of their interaction with eukaryotic cells.  相似文献   

20.
The interaction of the lanthanum(III) La(III)-L (L=N,N'-bis-(1-carboxy-2-methylpropyl)-1,10-phenanthroline-2,9-dimethanamine) complex with calf thymus DNA was studied by electronic spectra, fluorescence spectra and circular dichroic spectra. The La(III)-L complex was assayed for antitumor activity in vitro against the HL-60 (the human leucocytoma) cells, HCT-8 (the human coloadenocarcinoma) cells, BGC-823 (the human carcinoma of stomach) cells, Bel-7402 (the human liver carcinoma) cells and KB (the human nasopharyngeal carcinoma) cells. The results show that the La(III)-L complex has activity against HL-60 cells, Bel-7402 cells and KB cells. Moreover, it is slightly more effective against Bel-7402 cell line than cisplatin. Using ethidium bromide as a fluorescence probe, the binding mode of the La(III)-L complex to calf-thymus DNA was studied spectroscopically. For comparison, the same measurements were carried out with La(III)-Phen [La(III)-1,10-phenanthroline complex] and La(III)-Val [La(III)-L-valine complex]. The results indicate that the La(III)-L and La(III)-Phen complexes possibly interact with calf-thymus DNA by both intercalative and coordination binding, whereas the La(III)-Val complex interacts with calf-thymus DNA by coordination binding. Kinetics of binding of the three complexes to DNA is for the first time studied using ethidium bromide as a fluorescence probe with stopped-flow spectrophotometer under pseudo-first-order condition. The strong two-step mechanisms in the process of the La(III)-L and La(III)-Phen complexes and one step in the process of the complex La(III)-Val interacting with DNA are observed, and the k(obs) (observed pseudo-first-order rate constant) and E(a) (observed energy of activation) values of binding to DNA are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号