首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The non-transmembrane protein tyrosine phosphatase, PTP1B, comprises 435 amino acids, of which the C-terminal 114 residues have been implicated in controlling both localization and function of this enzyme. Inspection of the sequence of the C-terminal segment reveals a number of potential sites of phosphorylation. We show that PTP1B is phosphorylated on seryl residues in vivo. Increased phosphorylation of PTP1B is seen to accompany the transition from G2 to M phase of the cell cycle. Two major tryptic phosphopeptides appear in two-dimensional maps of PTP1B from mitotic cells. One of these comigrates with the peptide generated following phosphorylation of PTP1B in vitro at Ser386 by the mitotic protein Ser/Thr kinase p34cdc2:cyclin B. The site of phosphorylation that is responsible for the pronounced retardation in the electrophoretic mobility of PTP1B from mitotic cells has been identified by site directed mutagenesis as Ser352. The identify of the kinase responsible for this modification is presently unknown. We also show that stimulation of HeLa cells with the phorbol ester TPA enhances phosphorylation of PTP1B. Two dimensional phosphopeptide mapping reveals that the bulk of the phosphate is in a single tryptic peptide. The site, identified as Ser378, is also the site of phosphorylation by protein kinase C (PKC) in vitro. Thus the TPA-stimulated phosphorylation of PTP1B in vivo appears to result directly from phosphorylation by PKC. The effect of phosphorylation on the activity of PTP1B has been examined in immunoprecipitates from TPA-treated and nocodazole-arrested cells. TPA treatment does not appear to affect activity directly, whereas the activity of PTP1B from nocodazole-arrested cells is only 70% of that from asynchronous populations.  相似文献   

2.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

3.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

4.
Phosphorylation of G protein-coupled receptors is a critical step in the rapid termination of G protein signaling. In rod cells of the vertebrate retina, phosphorylation of rhodopsin is mediated by GRK1. In cone cells, either GRK1, GRK7, or both, depending on the species, are speculated to initiate signal termination by phosphorylating the cone opsins. To compare the biochemical properties of GRK1 and GRK7, we measured the K(m) and V(max) of these kinases for ATP and rhodopsin, a model substrate. The results demonstrated that these kinases share similar kinetic properties. We also determined that cAMP-dependent protein kinase (PKA) phosphorylates GRK1 at Ser(21) and GRK7 at Ser(23) and Ser(36) in vitro. These sites are also phosphorylated when FLAG-tagged GRK1 and GRK7 are expressed in HEK-293 cells treated with forskolin to stimulate the endogenous production of cAMP and activation of PKA. Rod outer segments isolated from bovine retina phosphorylated the FLAG-tagged GRKs in the presence of dibutyryl-cAMP, suggesting that GRK1 and GRK7 are physiologically relevant substrates. Although both GRKs also contain putative phosphorylation sites for PKC and Ca(2+)/calmodulin-dependent protein kinase II, neither kinase phosphorylated GRK1 or GRK7. Phosphorylation of GRK1 and GRK7 by PKA reduces the ability of GRK1 and GRK7 to phosphorylate rhodopsin in vitro. Since exposure to light causes a decrease in cAMP levels in rod cells, we propose that phosphorylation of GRK1 and GRK7 by PKA occurs in the dark, when cAMP levels in photoreceptor cells are elevated, and represents a novel mechanism for regulating the activities of these kinases.  相似文献   

5.
Previously we have shown that protein kinase C (PKC)-mediated reorganization of the actin cytoskeleton in smooth muscle cells is transmitted by the non-receptor tyrosine kinase, Src. Several authors have described how 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation of cells results in an increase of Src activity, but the mechanism of the PKC-mediated Src activation is unknown. Using PKC isozymes purified from Spodoptera frugiperda insect cells, we show here that PKC is not able to activate Src directly. Our data reveal that the PKC-dependent Src activation occurs via the activation of the protein tyrosine phosphatase (PTP) PTP alpha. PTP alpha becomes activated in vivo after TPA stimulation. Further, we show that PKC delta phosphorylates and activates only PTP alpha in vitro but not any other of the TPA-responsive PKC isozymes that are expressed in A7r5 rat aortic smooth muscle cells. To further substantiate our data, we show that cells lacking PKC delta have a markedly reduced PTP alpha and Src activity after 12-O-tetradecanoylphorbol-13-acetate stimulation. These data support a model in which the main mechanism of 12-O-tetradecanoylphorbol-13-acetate-induced Src activation is the direct phosphorylation and activation of PTP alpha by PKC delta, which in turn dephosphorylates and activates Src.  相似文献   

6.
Several recent studies have shown that Ca2+/calmodulin-dependent protein kinase I (CaMKI) is phosphorylated and activated by a protein kinase (CaMKK) that is itself subject to regulation by Ca2+/calmodulin. In the present study, we demonstrate that this enzyme cascade is regulated by cAMP-mediated activation of cAMP-dependent protein kinase (PKA). In vitro, CaMKK is phosphorylated by PKA and this is associated with inhibition of enzyme activity. The major site of phosphorylation is threonine 108, although additional sites are phosphorylated with lower efficiency. In vitro, CaMKK is also phosphorylated by CaMKI at the same sites as PKA, suggesting that this regulatory phosphorylation might play a role as a negative-feedback mechanism. In intact PC12 cells, activation of PKA with forskolin resulted in a rapid inhibition of both CaMKK and CaMKI activity. In hippocampal slices CaMKK was phosphorylated under basal conditions, and activation of PKA led to an increase in phosphorylation. Two-dimensional phosphopeptide mapping indicated that activation of PKA led to increased phosphorylation of multiple sites including threonine 108. These results indicate that in vitro and in intact cells the CaMKK/CaMKI cascade is subject to inhibition by PKA-mediated phosphorylation of CaMKK. The phosphorylation and inhibition of CaMKK by PKA is likely to be involved in modulating the balance between cAMP- and Ca2+-dependent signal transduction pathways.  相似文献   

7.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

8.
The involvement of CK1 (casein kinase 1) delta in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1delta. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) alpha all phosphorylate CK1delta. PKA was identified as the major cellular CK1deltaCK (CK1delta C-terminal-targeted protein kinase) for the phosphorylation of CK1delta in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1deltaCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1deltaCK, and both PKA and CK1deltaCK phosphorylated CK1delta at Ser370 in vitro. Furthermore, phosphorylation of CK1delta by PKA decreased substrate phosphorylation of CK1delta in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1delta for beta-casein and the GST (gluthatione S-transferase)-p53 1-64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1delta to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1delta. In summary, we conclude that PKA phosphorylates CK1delta, predominantly at Ser370 in vitro and in vivo, and that site-specific phosphorylation of CK1delta by PKA plays an important role in modulating CK1delta-dependent processes.  相似文献   

9.
M Eggert  N Radomski  D Tripier  P Traub  E Jost 《FEBS letters》1991,292(1-2):205-209
Isolated interphase lamin C, obtained from Ehrlich ascites tumor cells, was digested by Lys-C endoproteinase, the resulting peptides separated by reversed-phase HPLC and subjected to microsequencing in order to identify phosphorylation sites in interphase and following phosphorylation in vitro by cdc2-kinase, protein kinase C (PKC) and protein kinase A (PKA), respectively. Nuclear lamin C showed partial phosphorylation of Ser392 and Ser409, and possibly Ser407 in interphase. Phosphorylation was increased in response to cdc2-kinase at Ser390 and Ser392 and to PKC at Ser572. The N-terminal peptide (aa 1-32) containing consensus sequences for the 3 kinases was phosphorylated by cdc2-kinase, PKC and PKA. The sequence data suggests that multiple molecular switches via lamina modification control the dynamic behaviour of the nucleoskeleton during the cell cycle.  相似文献   

10.
The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.  相似文献   

11.
Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression.  相似文献   

12.
Binding of epidermal growth factor (EGF) to its receptor (EGFR) augments the tyrosine kinase activity of the receptor and autophosphorylation. Exposure of some tissues and cells to EGF also stimulates adenylyl cyclase activity and results in an increase in cyclic AMP (cAMP) levels. Because cAMP activates the cAMP-dependent protein kinase A (PKA), we investigated the effect of PKA on the EGFR. The purified catalytic subunit of PKA (PKAc) stoichiometrically phosphorylated the purified full-length wild type (WT) and kinase negative (K721M) forms of the EGFR. PKAc phosphorylated both WT-EGFR as well as a mutant truncated form of EGFR (Delta1022-1186) exclusively on serine residues. Moreover, PKAc also phosphorylated the cytosolic domain of the EGFR (EGFRKD). Phosphorylation of the purified WT as well as EGFRDelta1022-1186 and EGFRKD was accompanied by decreased autophosphorylation and diminished tyrosine kinase activity. Pretreatment of REF-52 cells with the nonhydrolyzable cAMP analog, 8-(4-chlorophenylthio)-cAMP, decreased EGF-induced tyrosine phosphorylation of cellular proteins as well as activation of the WT-EGFR. Similar effects were also observed in B82L cells transfected to express the Delta1022-1186 form of EGFR. Furthermore, activation of PKAc in intact cells resulted in serine phosphorylation of the EGFR. The decreased phosphorylation of cellular proteins and diminished activation of the EGFR in cells treated with the cAMP analog was not the result of altered binding of EGF to its receptors or changes in receptor internalization. Therefore, we conclude that PKA phosphorylates the EGFR on Ser residues and decreases its tyrosine kinase activity and signal transduction both in vitro and in vivo.  相似文献   

13.
Vasodilator-stimulated phosphoprotein is a substrate for protein kinase C   总被引:1,自引:0,他引:1  
Chitaley K  Chen L  Galler A  Walter U  Daum G  Clowes AW 《FEBS letters》2004,556(1-3):211-215
Vasodilator-stimulated phosphoprotein (VASP), an actin binding protein localized to areas of focal contacts, is a substrate for the cyclic adenosine monophosphate/cyclic guanosine monophosphate (cAMP/cGMP)-dependent protein kinases (PKA, PKG). In this study, we show that serum stimulation of vascular smooth muscle cells (SMCs) induces VASP phosphorylation on Ser157, in a mechanism not dependent on PKA or PKG. We tested the possibility that protein kinase C (PKC), a regulator of cytoskeletal function, is involved. PKC inhibition or down-regulation prevented serum-induced phosphorylation of VASP at Ser157 in rat vascular SMCs. Additionally, recombinant PKCalpha directly phosphorylated Ser157 on VASP. In summary, our data support the hypothesis that PKC phosphorylates VASP and mediates serum-induced VASP regulation.  相似文献   

14.
Voltage-dependent L-type calcium (Ca) channels are heteromultimeric proteins that are regulated through phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrated that the beta 2 subunit was a substrate for PKA in intact cardiac myocytes through back-phosphorylation experiments. In addition, a heterologously expressed rat beta 2a subunit was phosphorylated at two sites in vitro by purified PKA. This beta 2a subunit contains two potential consensus sites for PKA-mediated phosphorylation at Thr164 and Ser591. However, upon mutation of both of these residues to alanines, the beta 2a subunit remained a good substrate for PKA. The actual sites of phosphorylation on the beta 2a subunit were identified by phosphopeptide mapping and microsequencing. Phosphopeptide maps of a bacterially expressed beta 2a subunit demonstrated that this subunit was phosphorylated similarly to the beta 2 subunit isolated from heart tissue and that the phosphorylation sites were contained in the unique C-terminal region. Microsequencing identified three serine residues, each of which conformed to loose consensus sites for PKA-mediated phosphorylation. Mutation of these residues to alanines resulted in the loss of the PKA-mediated phosphorylation of the beta 2a subunit. The results suggest that phosphorylation of the beta 2a subunit by PKA occurs at three loose consensus sites for PKA in the C-terminus and not at either of the two strong consensus sites for PKA. The results also highlight the danger of assuming that consensus sites represent actual sites of phosphorylation. The actual sites of PKA-mediated phosphorylation are conserved in most beta 2 subunit isoforms and thus represent potential sites for regulation of channel activity. The sites phosphorylated by PKA are not substrates for protein kinase C (PKC), as the mutated beta 2 subunits lacking PKA sites remained good substrates for PKC.  相似文献   

15.
The activity of the serine/threonine kinase c-Raf (Raf) is inhibited by increased intracellular cAMP. This is believed to require phosphorylation with the cAMP-dependent protein kinase (PKA), although the mechanism by which PKA inhibits Raf is controversial. We investigated the requirement for PKA phosphorylation using Raf mutants expressed in HEK293 or NIH 3T3 cells. Phosphopeptide mapping of (32)P-labeled Raf (WT) or a mutant lacking a putative PKA phosphorylation site (serine to alanine, S43A) confirmed that serine 43 (Ser(43)) was the major cAMP (forskolin)-stimulated phosphorylation site in vivo. Interestingly, the EGF-stimulated Raf kinase activity of the S43A mutant was inhibited by forskolin equivalently to that of the WT Raf. Forskolin also inhibited the activation of an N-terminal deletion mutant Delta5-50 Raf completely lacking this phosphorylation site. Although WT Raf was phosphorylated by PKA, phosphorylation did not inhibit Raf catalytic activity in vitro, nor did forskolin treatment inhibit the activity of an N-terminally truncated Raf protein (Raf 22W) or a full-length Raf protein (Raf-CAAX) expressed in NIH 3T3 cells. In contrast, forskolin inhibited the EGF-dependent activation of a Raf isoform (B-Raf), lacking an analogous phosphorylation site to Ser(43). Thus, these results demonstrate that PKA exerts its inhibitory effects independently of direct Raf phosphorylation and suggests instead that PKA prevents an event required for the EGF-dependent activation of Raf.  相似文献   

16.
Transient outward K+ currents are particularly important for the regulation of membrane excitability of neurons and repolarization of action potentials in cardiac myocytes. These currents are modulated by PKC (protein kinase C) activation, and the K+- channel subunit Kv4.2 is a major contributor to these currents. Furthermore, the current recorded from Kv4.2 channels expressed in oocytes is reduced by PKC activation. The mechanism underlying PKC regulation of Kv4.2 currents is unknown. In the present study, we determined that PKC directly phosphorylates the Kv4.2 channel protein. In vitro phosphorylation of the intracellular N- and C-termini of Kv4.2 GST (glutathione transferase) tagged fusion protein revealed that the C-terminal of Kv4.2 was phosphorylated by PKC, whereas the N-terminal was not. Amino acid mapping and site-directed mutagenesis revealed that the phosphorylated residues on the Kv4.2 C-terminal were Ser447 and Ser537. A phospho-site-specific antibody showed that phosphorylation at the Ser537 site was increased in the hippocampus in response to PKC activation. Surface biotinylation experiments revealed that mutation to alanine of both Ser447 and Ser537 in order to block phosphorylation at both of the PKC sites increased surface expression compared with wild-type Kv4.2. Electrophysiological recordings of the wild-type and both the alanine and aspartate mutant Kv4.2 channels expressed with KChIP3 (Kv4 channel-interacting protein 3) revealed no significant difference in the half-activation or half-inactivation voltage of the channel. Interestingly, Ser537 lies within a possible ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) recognition (docking) domain in the Kv4.2 C-terminal sequence. We found that phosphorylation of Kv4.2 by PKC enhanced ERK phosphorylation of the channel in vitro. These findings suggest the possibility that Kv4.2 is a locus for PKC and ERK cross-talk.  相似文献   

17.

Background

Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. Its activity is regulated by reversible protein phosphorylation. In rat HSL Ser563, Ser659 and Ser660 have been shown to be phosphorylated by protein kinase A (PKA) in vitro as well as in vivo.

Methodology/Principal Findings

In this study we employed site-directed mutagenesis, in vitro phosphorylation and mass spectrometry to show that in vitro phosphorylation of human HSL by PKA occurs primarily on Ser649 and Ser650 (Ser659 and Ser660 in rat HSL). The wild type enzyme and four mutants were expressed in C-terminally His-tagged form in Sf9 insect cells and purified to homogeneity. HSL variants in which Ser552 and/or Ser554 were mutated to Ala or Glu retained both lipolytic and non-lipolytic activity and were phosphorylated by PKA and activated to a similar extent as the wild type enzyme. 32P-labeling studies revealed that the bulk of the phosphorylation was on the Ser649/Ser650 site, with only a minor phosphorylation of Ser552 and Ser554. MS/MS analysis demonstrated that the peptide containing Ser649 and Ser650 was primarily phosphorylated on Ser650. The mutant lacking all four serines had severely reduced lipolytic activity, but a lesser reduction in non-lipolytic activity, had S0.5 values for p-nitrophenol butyrate and triolein comparable to those of wild type HSL and was not phosphorylated by PKA. PKA phosphorylation of the wild type enzyme resulted in an increase in both the maximum turnover and S0,5 using the TO substrate.

Conclusions

Our results demonstrate that PKA activates human HSL against lipid substrates in vitro primarily through phosphorylation of Ser649 and Ser650. In addition the results suggest that Ser649 and Ser650 are located in the vicinity of a lipid binding region and that PKA phosphorylation controls the accessibility of this region.  相似文献   

18.
PLC gamma 1, a possible mediator of T cell receptor function   总被引:10,自引:0,他引:10  
Stimulation of T cell antigen receptor (TCR/CD3) following the recognition of peptide-major histocompatibility antigen complex induces phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, the phospholipase C (PLC) enzyme mediating this process has not been identified. We report that PLC gamma 1 protein is expressed in human T cells. It is a phosphoprotein, and the activation of cyclic AMP-dependent protein kinase (PKA) or of protein kinase C (PKC) with forskolin or phorbol ester, respectively, increases the level of phosphorylation. CD3 stimulation of T cells induces tyrosine phosphorylation of PLC gamma 1 and causes 8-10-fold higher yield of PLC activity with anti-phosphotyrosine antibody (APTyr Ab) from activated cells than from non-activated cells. Genistein, an inhibitor of protein tyrosine kinase, decreases this yield of AP-Tyr Ab-bound PLC activity from activated cells and lowers the level of Ca2+ mobilization. Furthermore, phorbol ester and forskolin treatment of cells before CD3 stimulation reduces the level of tyrosine phosphorylation of PLC gamma 1 and the PLC activity associated with APTyr Ab. These results suggest that CD3 stimulation activates PIP2 hydrolysis by inducing tyrosine phosphorylation of PLC gamma 1, which is regulated negatively by PKC and PKA.  相似文献   

19.
This study determined whether all protein kinase A (PKA) and protein kinase C (PKC) phosphorylation sites on the alpha4 subunit of rat alpha4beta2 neuronal nicotinic receptors could be localized to the M3/M4 cytoplasmic domain of the protein, and investigated specific amino acid substrates for the kinases through two-dimensional phosphopeptide mapping and site-directed mutagenesis. Experiments were conducted using alpha4beta2 receptors expressed in Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(333-594) ). When oocytes expressing alpha4beta2 receptors were incubated with [(32) P]orthophosphate in order to label endogenous ATP stores, phosphorylation of alpha4 subunits was evident. Incubation of either immunoprecipitated receptors or the fusion protein with [(32) P]ATP and either PKA or PKC followed by trypsinization of the samples demonstrated that the kinases phosphorylated alpha4 subunits on multiple phosphopeptides, and that the phosphorylated full-length alpha4 protein and fusion protein produced identical phosphopeptide maps. Site-directed mutagenesis of Ser365, Ser472 and Ser491 to alanines in the fusion protein eliminated phosphopeptides phosphorylated by PKA, but not by PKC. Other mutations investigated, Ser470, Ser493, Ser517 and Ser590, did not alter the phosphopeptide maps. Results indicate that Ser365, Ser472 and Ser491 on neuronal nicotinic receptor alpha4 subunits are phosphorylated by PKA and are likely to represent post-translational regulatory sites on the receptor.  相似文献   

20.
Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser(231) residue, located within the KIM. Upon phosphorylation of Ser(231), PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal-regulated kinase (ERK)1/2 and p38alpha were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Calpha catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38alpha by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号