首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocrine cells exhibiting immunoreactivity to FMRFamide-like, LPLRFamide-like, neuropeptide Y(NPY)-like and peptide YY(PYY)-like peptides were found in the periphery of the Brockmann bodies of the cod, Gadus morhua, and rainbow trout, Oncorhynchus mykiss. No immunoreactivity or very weak labelling was found with antisera to pancreatic polypeptide (PP). Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was found in nerve fibres, whereas labelling with VIP antiserum in endocrine cells disappeared after preincubation with nonimmune serum. There were always more immunoreactive cells in the rainbow trout than in the cod. No immunoreactivity could be seen with antisera to gastrin/cholecystokinin (CCK) or enkephalin. Double-labelling studies were performed to study the colocalization of the peptides in peripheral endocrine cells. Cells immunoreactive to NPY were also labelled with antisera to FMRFamide, LPLRFamide and PYY. The co-localization pattern of NPY varied; in some Brockmann bodies, a population of the immunoreactive cells showed co-localization and others contained NPY-like immunoreactivity only, whereas in other Brockmann bodies, all NPY-labelled cells also contained FMRFamide-like, LPLRFamide-like and PYY-like immunoreactivity. Cells immunoreactive to PYY similarly contained FMRFamide-like, LPLRFamide-like and NPY-like immunoreactivity, comparable to the patterns observed with NPY. Glucagon-like immunoreactivity was found at the periphery of the Brockmann bodies. A subpopulation of the glucagon-containing cells contained NPY-like immunoreactivity. PYY-like immunoreactivity was also found co-localized with glucagon-like immunoreactivity, as were FMRFamide-like and LPLRFamide-like immunoreactivity. Therefore, either NPY-like and PYY-like immunoreactivity together with FMRFamide-like and LPLRFamide-like immunoreactivity occur in the same endocrine cells of the Brockmann body of the cod and rainbow trout, or a hybrid NPY/PYY-like peptide recognized by both NPY and PYY antisera is present in the Brockmann body.  相似文献   

2.
Using rabbit and guinea-pig antisera, raised against GEP neurohormonal peptides of mammalian origin, cells were observed in the brain and/or in the fused ventral ganglia of the last (fifth) larval instar of the hoverfly, Eristalis aeneus, being immunoreactive with antisera against insulin, somatostatin, glucagon, PP, secretin, gastrin/CCK/caerulein; substance P, enkephalin and endorphin. Most of these GEP neurohormonal peptides also occurred in nerve fibers. No immunoreactive cells or nerve fibers could be detected with antisera against GIP, VIP, (the central fragments of) CCK, bombesin or neurotensin. The antisera tested failed to reveal any immunoreactive cells or nerves in Weismann's ring (fused corpus allatum/corpus cardiacum and thoracic gland) or in different parts of the alimentary tract. The observations support the hypothesis that neuronal GEP hormonal peptide production in the brain is a genuinely original mechanism and the appearance of endocrine cells in the gut a later feature in evolution.  相似文献   

3.
Summary The localisation and distribution of 10 vertebrate-derived neuropeptides in the earthworm, Lumbricus terrestris, have been determined by an indirect immunofluorescence technique. The peptides are pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), neuropeptide Y (NPY), glucagon (C-terminal), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), gastrinreleasing peptide (GRP), calcitonin gene-related peptide (CGRP), neurotensin (NT), and met-enkephalin. For 6 of the peptides — PYY, NPY, PHI, glucagon, GRP and CGRP — this is the first demonstration of their presence in any annelid, and NT has not previously been described in an oligochaete. Cell bodies and nerve fibres immunoreactive to the 10 peptides occur throughout the CNS. In the PNS, epidermal sensory cells displayed immunoreactivities to PP and PYY, and PP-, PYY-, NPY-, PHI- and GRP-like immunoreactivities occurred in nerve fibres supplying the main body muscles. Nerve fibres immunoreactive to PP and PYY are also associated with the innervation of the gut (pharynx, oesophageal glands, and mid and posterior regions of the intestine). No endocrine cells immunoreactive for any of the antisera tested could be identified in the gut epithelium, suggesting that dual location of peptides in the brain and gut epithelium is a phenomenon that occurred at a later stage in evolution. No immunoreactive elements were detected in any of the organs and ducts of the reproductive and excretory systems.  相似文献   

4.
El-Salhy  M.  Falkmer  S.  Kramer  K. J.  Speirs  R. D. 《Cell and tissue research》1983,232(2):295-317
In the brain of adult specimens of the tobacco hornworm moth, Manduca sexta (L), cells immunoreactive for several kinds of neuropeptides were localized by means of the PAP procedure, by use of antisera raised against mammalian hormones or hormonal peptides. In contrast, no such neurosecretory cells were found in the corpora cardiaca and corpora allata (CC/CA); in the CC/CA, however, immunoreactive nerve fibres were observed, reaching these organs from the brain. The neurosecretory cells found in the brain were immunoreactive with at least one of the following mammalian antisera, namely those raised against the insulin B-chain, somatostatin, glucagon C-terminal, glucagon N-terminal, pancreatic polypeptide (PP), secretin, vasoactive intestinal polypeptide (VIP), glucose-dependent insulinotropic peptide (GIP), gastrin C-terminus, enkephalin, alpha- and beta-endorphin, Substance P, and calcitonin. No cells were immunoreactive with antisera specific for detecting neurons containing the insulin A-chain, nerve growth factor, epidermal growth factor, insulin connecting peptide (C-peptide), polypeptide YY (PYY), gastrin mid-portion (sequence 6-13), cholecystokinin (CCK) mid-portion (sequences 9-20 and 9-25), neurotensin C-terminus, bombesin, motilin, ACTH, or serotonin. All the neuropeptide-immunoreactive cells observed emitted nerve fibers passing through the brain to the CC and in some cases also to the CA. In CC these immunoreactive nerve fibers tended to accumulate near the aorta. It was speculated that neuropeptides are released into the circulating haemolymph and act as neurohormones.  相似文献   

5.
Summary The gastrointestinal tract of the alligator Alligator mississipiensis has been investigated for the presence of immunoreactivity to fourteen regulatory peptides all known to occur in the mammalian gut system.Mucosal endocrine cells reacting specifically with the antisera to neurotensin, C-terminal gastrin, somatostatin, bombesin, secretin, pancreatic glucagon and enteroglucagon were detectable, the distribution of these cells being, in general, similar to the mammalian pattern. Peripheral nerve cell bodies and nerve fibres were detected with the antisera to vasoactive intestinal polypeptide, substance P, bombesin and somatostatin again with a distribution similar to that seen in mammals.No immunoreactivity was observed with the available antisera to glicentin, motilin, gastric inhibitory polypeptide, gastrin 34, cholecystokinin 9–20 and met-enkephalin.  相似文献   

6.
The general identification of endocrine cells in the stomach of the lizard Podarcis hispanica was carried out by their response to the Grimelius and Masson-Fontana techniques. 11 immunoreactive cell-types, positive for chromogranin-, serotonin-, caerulein/gastrin/ cholecystokinin (CAER/G/CCK)-, glucagon-like-peptide-1 (GLP-1)-. glucagon-, bombesin-,somatostatin-, pancreatic polypeptide (PP)-, peptide tyrosine tyrosine (PYY)-, neurotensin-and calcitonin gene related peptide (CGRP)- antisera were detected by immunocytochemical methods. Co-existence of glucagon with GLP-1, and PP with PYY were observed in some cells. Furthermore, immunoreactivities for members of gastrin and PP families were also found to co-exist in a few cells. In the muscular layer, vasoactive intestinal peptide (VIP)- and substance P-immunoreactive nerve fibers were also found.  相似文献   

7.
The effects of various peptides on the isolated pulmonary artery   总被引:2,自引:0,他引:2  
H Obara  M Kusunoki  M Mori  K Mikawa  S Iwai 《Peptides》1989,10(1):241-243
Helical strips of pulmonary arteries from rabbits were tested for their responses to the following peptides: neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), substance P (SP), cholecystokinin-octapeptide (CCK), somatostatin (SS), bombesin, neurotensin and gastrin. SP, in the absence of active base-tension, and NPY both induced concentration-dependent contractions, while VIP and SP, in the presence of active base-tone, and CCK induced relaxation. The pD2 (-log ED50) was in the order of NPY greater than SP and SP greater than CCK greater than VIP. SS, bombesin, NT and gastrin had no effect. These findings suggest peptidergic involvement in the vessels.  相似文献   

8.
The gastrodermal cell types of Microstomum lineare (Turbellaria, Macrostomida) were studied by electron microscopy. Their immunoreactivity (IR) to bovine pancreatic peptide (BPP), FMRF-amide and vasotocin, somatostatin, neurotensin, ACTH, CCK, bombesin, secretin, gastrin/CCK and insulin antisera was tested by light microscopic immunocytochemical methods. In addition to granular club cells and phagocytic cells, neurons and neoblasts occur in the gastroderm of this turbellarian species. This is the first observation of neurons in the gastroderm of a flatworm. Dense-core vesicles (70–100 nm diameter), electron lucent cytoplasm and numerous Golgi complexes characterize the neurons. Unpolarized two-way synapses, neuromuscular junctions and polarized chemical synapses can be observed in the gastroderm. Neoblasts with large nuclei and scanty cytoplasm and differentiating cells containing clusters of basal bodies occur next to the basal lamina of the gastroderm. BPP-like, FMRF-amide-like and vasotocin-like immunoreactivity is demonstrated in the gastroderm. Both BPP and FMRF-amide IR is restricted to the basal cytoplasm of the granular club cells, while a different location for IR to vasotocin antiserum is observed. The status of the neuronal cell in the gastroderm of M. lineare is discussed in relation to endocrine (paracrine) cells and neurons in the gastroderm of invertebrates.  相似文献   

9.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   

10.
Biogenic peptides and amines associated with the chromaffin tissue in Atlantic cod (Gadus morhua), rainbow trout (Oncorhynchus mykiss), European eel (Anguilla anguilla), spiny dogfish (Squalus acanthias) and Atlantic hagfish (Myxine glutinosa) were identified utilizing immunohistochemical techniques. Within the posterior cardinal vein (PCV) in cod, trout and eel, a subpopulation of chromaffin cells displayed immunoreactivity to tyrosine hydroxylase (TH) and dopamine--hydroxylase (DH) but not to phenylethanolamine-N-methyltransferase (PNMT). TH-like immunorectivity was observed within cells in hagfish hearts. Nerve fibres displaying vasoactive intestinal peptide (VIP) immunoreactivity and pituitary adenylyl cyclase activating peptide (PACAP) immunoreactivity innervated cod, trout and ell chromaffin cells. In eel, neuropeptide Y (NPY)-like and peptide YY (PYY)-like immunoreactivity was located within cells in the PCV, including chromaffin cells. Serotonin-like immunoreactivity was observed within eel and cod chromaffin cells and in hagfish hearts. In the dogfish axillary bodies, nerves displaying TH-like, VIP-like, PACAP-like, substance P-like and galanin-like immunoreactivity were observed. These results are compared with those of other vertebrates, and potential roles for these substances in the control of catecholamine release are suggested.  相似文献   

11.
Summary The distribution of endocrine cells in the gastrointestinal tract of the house musk shrew, Suncus murinus (Family Soricidae, Order Insectivora) was studied immunohistochemically. The hormones investigated were gastrin, cholecystokinin (CCK), somatostatin, secretin, glucagon, gastric inhibitory polypeptide (GIP), motilin and neurotensin. In the gastric mucosa, gastrin and somatostatin cells were only found in the pyloric regions, and no other hormonal cell-types were observed. In the intestinal mucosa, the largest number of endocrine cells belonged to the gastrin and glucagon/glicentin cell-types, whereas CCK-33/39 and secretin cells were the least numerous. Numbers of other cell-types were intermediate between these two groups. The gastrin and GIP cells were mostly localized in the proximal portion of the intestine, decreasing in number towards the distal portion. The motilin and CCK-33/39 cells were restricted to the proximal half. The glucagon/glicentin and neurotensin cells were most abundant in the middle portion. The somatostatin and secretin cells, although only present in small numbers, were randomly distributed throughout the intestine. This characteristic distribution of gastrointestinal endocrine cells is discussed in comparison with the distribution patterns of other mammals.Dr. Munemitsu Hoshino, who was Professor of the Department of Pathology and directed this study, passed away on May 23rd 1988  相似文献   

12.
Summary Polypeptide-hormone producing cells were localized in the alimentary tract and cerebral ganglion ofCiona intestinalis using cytochemical, immunocytochemical and electron-microscopical methods.Antisera to the following peptides of vertebrate type were employed: bombesin, human prolactin (hPRL), bovine pancreatic polypeptide (PP), porcine secretin, motilin, vasoactive intestinal polypeptide (VIP),-endorphin, leu-enkephalin, met-enkephalin, neurotensin, 5-hydroxytryptamin (5-HT), cholecystokinin (CCK), human growth hormone (GH), ACTH, corticotropin-like intermediate lobe peptide (CLIP) and gastric inhibitory peptide (GIP).Immunoreactive cells were found both in the alimentary tract epithelium and in the cerebral ganglion for bombesin, PP, substance P, somatostatin, secretin and neurotensin. Additionally, in the cerebral ganglion only, there were cells immunoreactive for-endorphin, VIP, motilin and human prolactin. 5-HT positive cells, however, were restricted to the alimentary tract.No immunoreactivity was obtained either in the cerebral ganglion or in the alimentary tract with antibodies to leu-enkephalin, met-enkephalin, CCK, growth hormone, ACTH, CLIP and GIP. Prolactin-immunoreactive and pancreatic polypeptide-immunoreactive cells were argyrophilic with the Grimelius' stain and were found in neighbouring positions in the cerebral ganglion.At the ultrastructural level five differently granulated cell types were distinguished in the cerebral ganglion. Granules were present in the perikarya as well as in axons. The possible functions of the peptides as neurohormones, neuroregulators and neuromodulators are discussed.  相似文献   

13.
Summary The distribution of nerves showing neuropeptide Y (NPY)-like immunoreactivity in the cardiovascular system of elasmobranchs and teleosts has been investigated. Two species of teleosts, the rainbow trout (Salmo gairdneri) and the Atlantic cod (Gadus morhua), and three species of elasmobranchs, the spiny dogfish (Squalus acanthias), the little skate (Raja erinacea) and the starry ray (Raja radiata), were used in this study. An innervation of the cardiovascular system by an NPY-like substance was found only in the two species of Raja. A rich innervation was encountered in these skates, with the highest density of fibres in the wall of the ventricle, the conus arteriosus, the coeliac artery and smaller mesenterial vessels. In the vessels, the fibres formed a plexus at the adventitio-mediol border. Few fibres were found in the walls of the dorsal aorta, the sinus venosus and the atrium, and no fibres were observed in the walls of the ventral aorta. Falck-Hillarp fluorescence histochemistry showed the presence of a rich innervation of arteries and arterioles of the gut by catecholamine-containing nerve fibres.  相似文献   

14.
Summary The adult optic lobes of the blowfly Calliphora erythrocephala were found to be innervated by more than 2000 neurons immunoreactive to antisera raised against the neuropeptides FMRFamide, its fragment RFamide, and gastrin/cholecystokinin (CCK). All of the CCK-like immunoreactive (CCK-IR) neurons also reacted with antisera to RFamide, FMRFamide and pancreatic polypeptide. A few RFamide/FMRFamide-like immunoreactive (RF-IR) neurons did not react with CCK antisera; they reacted instead with antisera to Leu-enkephalin and Met-enkephalin-Arg6-Phe7. The RF-IR neurons are, thus, heterogeneous with respect to their contents of immunoreactive peptides. Two of the RF-IR neuron types innervating the adult optic lobes could be traced in their entirety only after following their postembryonic development, because of the complexity of the trajectories of the immunoreactive neuronal process in the adult insect. The majority of the cell bodies of the RF-IR and CCK-IR neurons lie within the optic lobes and are derived from imaginal neuroblasts of the inner and outer optic anlagen. Six of the peptidergic neurons are, however, metamorphosing larval neurons with their cell bodies in the central part of the protocerebrum. The full extent of immunoreactivitiy is not attained in some of the neurons until the late pupal or early adult stage. The larval optic center was also found to be innervated by neurons immuno-reactive with both RFamide and CCK antisera. The cell bodies of these RF-IR/CCK-IR neurons are located near the developing lamina (one on each side). In the 24 h pupa, the cell bodies of these neurons are still immunoreactive, but thereafter they cannot be immunolabeled apparently due to cell death or a change in transmitter phenotype.  相似文献   

15.
Summary The presence, distribution and development of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the gastro-entero-pancreatic system of a cartilaginous fish Scyliorhinus stellaris (L.) was investigated by immunohistochemical methods utilizing mammalian VIP antisera. In the gut VIP-like immunoreactivity was observed in both nerves and endocrine cells. Endocrine cells with VIP-like material were only detected in the intestinal epithelium while nerve fibres containing VIP-like material were noted along the whole gastro-entero-pancreatic system, being more numerous in the pyloric sphincter and in the intestinal portion. Immunoreactive nerve cell bodies were encountered in the stomach and intestinal portions localized in the submucosa and in the myenteric plexus. Intestinal immunoreactive endocrine cells were already present in the first developmental stage considered (embryos aged 4 months). They grow in number and before birth reach a frequency higher than in adults. Nerves and cell bodies showing VIP-like immunoreactivity, appear later, before birth, as a few elements in the smooth muscular layer, but only after birth their distribution and frequency are similar to those found in adults. The faint immunofluorescence shown by the immunoreactive endocrine cells and their developmental pattern, which is always different from that observed in nervous elements, suggest the presence of at least two VIP-like substances in the gastro-entero-pancreatic system of S. stellaris.  相似文献   

16.
The distribution of NADPH (nicotinamide adenine dinucleotide phosphate)-diaphorase in nerve cells in the gastrointestinal tract has been investigated and compared in three fish species representing different evolutionary branches. In mammals, NADPH-diphorase is identical to nitric oxide synthase (NOS) and can, in the presence of NADPH, reduce the dye nitroblue tetrazolium, resulting in a blue product. Using this method, we have found numerous NADPH-diaphorase-containing nerve cells in the myenteric plexus of the Atlantic cod (Gadus morhua) and the spiny dogfish (Squalus acanthias) but none in the hagfish (Myxine glutinosa). In the cod, nerve fibres were sparsely stained, whereas in the dogfish, they formed a dense pattern of fibre bundles. Double-staining for NADPH-diaphorase and the neuropolypeptides VIP (vasoactive intestinal polypeptide) and PACAP (pituitary adenylate cyclase activating peptide) revealed three separate populations designated VIP/NADPH, VIP/- and NADPH/-. The majority but not all of the NADPH-diaphorase-positive cells also showed VIP or PACAP immunoreactivity and vice versa. The presence of NADPH-diaphorase in neurons and the distribution of these neurons in the gastrointestinal tract of the two species indicate a physiological role for nitric oxide in the control of gut motility.  相似文献   

17.
The Mastomys (Praomys natalensis) species are a unique natural model in which the bioactivity of gastric carcinoids may be studied. Several investigators have previously demonstrated that these tumors contain large amounts of histamine. In this study we investigated the presence of peptides associated with the neoplasm. The levels and location of gastrin, gastric inhibitory peptide (GIP), neurotensin, peptide YY (PYY), pancreatic polypeptide (PP), glucagon, bombesin, vasoactive intestinal peptide (VIP) and somatostatin (SRIF) were investigated by radioimmunoassay and immunocytochemistry. In addition the distribution of these peptides were evaluated in the gastrointestinal tract of young and old animals to investigate possible age-related changes. PYY and enteroglucagon (EG) were significantly (P less than 0.001) elevated in both tumor tissue (676 +/- 152, 551 +/- 164 pmol/g) and plasma (620 +/- 160, 500 +/- 147 pmol/l) of tumor-bearing animals. Immunocytochemistry revealed PYY- and EG-like immunoreactivity in 20-30% of tumor cells. A significant decrease (P less than 0.05) in bombesin was noted in older animals, but no changes in gastric tissue content of PYY or EG could be detected between young and old animals. Gastrin was not detected in tumors and there were no significant changes in tissue or plasma levels with age. Small bowel concentrations of VIP and PYY were higher in the older mastomys (P less than 0.05). In contrast, colonic levels of bombesin, VIP, somatostatin and PYY were significantly lower (P less than 0.05) in older mastomys compared with young. The age-related changes in several peptides may reflect an adaptive response to acid hypersecretion. The multi-hormonal character of these neoplasms suggests that these tumors develop from a pluripotential stem cell.  相似文献   

18.
Summary A gastric peptide from the Dungeness crab (Cancer magister), extracted and characterized previously (Larson and Vigna 1983b), was localized in the foregut (stomach) of this species by immunocytochemistry using antisera specific for the bioactive carboxy-terminal amino acid sequence common to gastrins and cholecystokinins (CCKs). Immunoreactivity was found in all gastric epithelial cells and in the procuticle. Electron microscopy revealed an absence of peptidergic secretory granules in the gastric epithelial cells. The pattern of immunostaining suggests that the gastric epithelial cells secrete this peptide apically where it is incorporated into the cuticle lining the lumen. Specific immunostaining could not be demonstrated in various neural ganglia or in the hypodermis. The distribution of this peptide is different from that of gastrin/CCK in vertebrates and other invertebrates. This suggests that the crab gastric peptide is sufficiently similar to gastrin/CCK to react with C-terminal specific antisera, but may be anatomically, functionally, and possibly phylogenetically otherwise unrelated.  相似文献   

19.
The distribution of vasoactive intestinal peptide (VIP), bombesin and gastrin-cholecystokinin in the chicken was studied by radioimmunoassay of tissue extracts. VIP was present in high concentrations in colon (186 +/- 29 pmol/g), cloaca (116 +/- 27 pmol/g), jejunum (97 +/- 14 pmol/g) and pancreas (15 +/- 3 pmol/g) but not detected in lung, liver or thymus. The highest concentration of bombesin was in the proventriculus (92 +/- 13 pmol/g), negligible in remaining gut but found in brain. Gel chromatography indicated two forms of bombesin: one form eluting with bombesin-14 and the other with gastrin releasing peptide. Gastrin-like immunoreactivity was found in low levels in the gut and brain. The concentrations were higher with an antiserum which cross reacted with the carboxy terminus common to gastrin-17 and CCK compared to a gastrin specific antisera (P less than 0.01). This suggests that the carboxy terminal region has been conserved during evolution. Each distribution pattern of bombesin, VIP and gastrin CCK is different, and distinct from that found in mammals, suggesting specific roles for these peptides in birds.  相似文献   

20.
Summary The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish,Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scatterd islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin-, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, -endorphin, -endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P-immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号