首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log–linear manner with the distance from the irradiated surface as predicted by Beer's law. The amount of fluorescence was proportional to chlorophyll concentration for chlorophyll solutions given epi‐illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi‐illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50–70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer–Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively.  相似文献   

3.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

4.
Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea   总被引:14,自引:9,他引:5  
Abstract. Light gradients were measured and correlated with chlorophyll concentration and anatomy of leaves in spinach (Spinacia oleracea L.). Light gradients were measured at 450, 550 and 680 nm within thin (455 μm) and thick (630 μm) leaves of spinach grown under sun and shade conditions. The light gradients were relatively steep in both types of leaves and 90% of the light at 450 and 680 nm was absorbed by the initial 140 μm of the palisade. In general, blue light was depleted faster than red light which, in turn was depleted faster than green light. Light penetrated further into the thicker palisade of sun leaves in comparison to the shade leaves. The distance that blue light at 450 nm travelled before it became 90% depleted was 120 μm in sun leaves versus 76 μm in shade leaves. Red light at 680 nm and green light at 550 nm travelled further but the trends were similar to that measured at 450nm. The steeper light gradients within the palisade-of shade leaves were caused by increased scattering of light within the intercellular air spaces and/or cells which were less compact than those in sun leaves. The decline in the amount of light within the leaf appeared to be balanced by a gradient in chlorophyll concentration measured in paradermal sections. Progressing from the adaxial epidermis, chlorophyll content increased through the palisade and then declined through the spongy mesophyll. Chlorophyll content was similar in the palisade of both sun and shade leaves. Chloroplast distribution within both sun and shade leaves was relatively uniform so that the chlorophyll gradient appeared to be caused by greater amounts of chlorophyll within chloroplasts located deeper within the leaf. These results indicate that the anatomy of the palisade may be of special importance for controlling the penetration of photo-synthetically active radiation into the leaf. Changing the structural characteristics of individual palisade cells or their arrangement may be an adaptation that maximizes the absorption of light in leaves with varying mesophyll thickness due to different ambient light regimes.  相似文献   

5.
Light and chlorophyll gradients within Cucurbita cotyledons   总被引:5,自引:4,他引:1  
Abstract. Measurement of light within 10–14-d-old green and etiolated Cucurbita pepo cotyledons were made with fibre-optic microprobes to assess the influence of chlorophyll distribution and anatomical variations in mesophyll cell type (spongy versus palisade) on internal light pattern. More than 50% of the pigment in green cotyledons occurred in the upper (adaxial) 300 μm and this gradient strongly influenced the internal propagation of 680 nm light. When the upper (adaxial) surface was irradiated with 680 nm light, almost complete absorption occurred within the first 400 μm (palisade) of approximately 1200-μm-thick cotyledons. In contrast, when lower (abaxial) surfaces were irradiated with 680 nm light, penetration extended throughout the spongy mesophyll to about the 700 μm depth. Measurements of collimaled and scattered light gradients at 550, 680 and 750 nm indicated that collimaled light was rapidly scattered by mesophyll cells. In cotyledons irradiated on the upper surface, spongy mesophyll cells received only scattered light. Furthermore, comparisons of scattered light gradients obtained from cotyledons irradiated on upper and lower surfaces suggested that spongy mesophyll cells scatter light more effectively than palisade cells, probably due to the greater proportion of intercellular air spaces in spongy mesophyll tissue. These data also indicate that both the spectral quality and quantity of light incident on palisade versus spongy mesophyll cells differs, perhaps contributing to developmental and physiological differences between these two mesophyll cell types.  相似文献   

6.
We have measured photosynthesis at the cellular, tissue, and whole leaf levels to understand the role of anthocyanin pigments on patterns of light utilization. Profiles of chlorophyll fluorescence through sections of red and green leaves of Quintinia serrata showed that anthocyanins in the mesophyll restricted absorption of green light to the uppermost palisade mesophyll. The distribution was further restricted when anthocyanins were also present in the upper epidermis. Mesophyll cells located beneath a cyanic light-filter assumed the characteristic photosynthetic features of shade-adapted cells. As a result, red leaves showed a 23% reduction in CO2 assimilation under light-saturating conditions, and a lower threshold irradiance for light-saturation, relative to those of green leaves. The photosynthetic characteristics of red leaves are comparable to those of shade-acclimated plants.  相似文献   

7.
The ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta Thuret grown in red, blue and green light was studied both in ultrathin sections and in replicas of rapidly frozen cells. High activity of dictyosornes and mucilage sacs results in a dramatic decrease of the protoplasmic area and in thicker cell walls in red light in comparison with blue light and the control. There are numerous well‐formed phycobili‐somes in blue light, whereas not well‐formed ones are present in red and especially in green light. There are also many phycobilisomes in the intrapyrenoidal thylakoids in blue light, fewer in green light, but they are absent in red light and in the control. It seems that in red and especially in green light, the phycobilisomes have fewer rods than in blue light. In green light, chloroplasts bear numerous genophores in contrast to blue and red light. The spacings of neighboring parallel thylakoids are as follows: control 64.3 nm, blue light 90.6 nm, red light 41.3 nm, green light 43.7 nm. Due to the relatively small spacing of the neighboring parallel thylakoids in red (41.3 nm) and in green light (43.7 nm) and of the given height of phycobilisomes (35 nm), the alternate phycobilisomes attached to neighboring lamellae are forced to interdigitate. The density of phycobilisomes per square micrometer of thylakoid surface dramatically increases in blue light (800 μm?2) in relation to red (250 μm?2) and green light (180 μm?2). The protoplasmic fracture face of the thylakoids reveals numerous, tightly packed, but randomly distributed particles. The particle size distribution is uniform in the two types of fracture faces, with an average diameter of about 11.5 nm. In blue light, both the phycobilisomes and exoplasmic face particles are organized into rows with a spacing of 60–70 nm. The results (changes: in the protoplasmic area; in the spacing of the thylakoids; in phycobilisome arrangement; in structure, shape and size of phycobilisomes; and in the accumulation of plastoglobuli), have shown that the monochromatic light (blue, red and green) brings about marked changes in the package effect and consequently in the efficiency of light absorption. In addition, the blue light contributes to the intense production of chlorophyll a, phycoerythrin, phycocyanin and soluble proteins, while intense production of polysaccharidic material is attributed to red light.  相似文献   

8.
Mesophyll structure has been associated with the photosynthetic performance of leaves via the regulation of internal light and CO(2) profiles. Differences in mesophyll structure and chlorophyll distribution within three ontogenetically different leaf types of Eucalyptus globulus ssp. globulus were investigated. Juvenile leaves are blue-grey in color, dorsiventral (adaxial palisade layer only), hypostomatous, and approximately horizontal in orientation. In contrast, adult leaves are dark green in color, isobilateral (adaxial and abaxial palisade), amphistomatous, and nearly vertical in orientation. The transitional leaf type has structural features that appear intermediate between the juvenile and adult leaves. The ratio of mesophyll cell surface area per unit leaf surface area (A(mes)/A) of juvenile leaves was maximum at the base of a single, adaxial palisade layer and declined through the spongy mesophyll. Chlorophyll a + b content showed a coincident pattern, while the chlorophyll a:b ratio declined linearly from the adaxial to abaxial epidermis. In comparison, the mesophyll of adult leaves had a bimodal distribution of A(mes)/A, with maxima occurring beneath both the adaxial and abaxial surfaces within the first layer of multiple palisade layers. The distribution of chlorophyll a + b content had a similar pattern, although the maximum ratio of chlorophyll a:b occurred immediately beneath the adaxial and abaxial epidermis. The matching distributions of A(mes)/A and chlorophyll provide further evidence that mesophyll structure may act to influence photosynthetic performance. These changes in internal leaf structure at different life stages of E. globulus may be an adaptation for increased xeromorphy under increasing light exposure experienced from the seedling to adult tree, similar to the characteristics reported for different species according to sunlight exposure and water availability within their native habitats.  相似文献   

9.
The azimuth of vertical leaves of Silphium terebinthinaceum profoundly influenced total daily irradiance as well as the proportion of direct versus diffuse light incident on the adaxial and abaxial leaf surface. These differences caused structural and physiological adjustments in leaves that affected photosynthetic performance. Leaves with the adaxial surface facing East received equal daily integrated irradiance on each surface, and these leaves had similar photosynthetic rates when irradiated on either the adaxial or abaxial surface. The adaxial surface of East-facing leaves was also the only surface to receive more direct than diffuse irradiance and this was the only leaf side which had a clearly defined columnar palisade layer. A potential cost of constructing East-facing leaves with symmetrical photosynthetic capcity was a 25% higher specific leaf mass and increased leaf thickness in comparison to asymmetrical South-facing leaves. The adaxial surface of South-facing leaves received approximately three times more daily integrated irradiance than the abaxial surface. When measured at saturating CO2 and irradiance, these leaves had 42% higher photosynthetic rates when irradiated on the adaxial surface than when irradiated on the abaxial surface. However, there was no difference in photosynthesis for these leaves when irradiated on either surface when measurements were made at ambient CO2. Stomatal distribution (mean adaxial/abaxial stomatal density = 0.61) was unaffected by leaf orientation. Thus, the potential for high photosynthetic rates of adaxial palisade cells in South-facing leaves at ambient CO2 concentrations may have been constrained by stomatal limitations to gas exchange. The distribution of soluble protein and chlorophyll within leaves suggests that palisade and spongy mesophyll cells acclimated to their local light environment. The protein/chlorophyll ratio was high in the palisade layers and decreased in the spongy mesophyll cells, presumably corresponding to the attentuation of light as it penetrates leaves. Unlike some species, the chlorophyll a/b ratio and the degree of thylakoid stacking was uniform throughout the thickness of the leaf. It appears that sun-shade acclimation among cell layers of Silphium terebinthinaceum leaves is accomplished without adjustment to the chlorophyll a/b ratio or to thylakoid membrane structure.  相似文献   

10.
Oxygen evolution was measured from mesophyll tissues in spinach leaves using a photoacoustic technique. The photosynthetic capacity of individual cell layers was measured by directing microscopic beams of light, 40 μm wide, to cells exposed within a leaf cross section. The resulting profile for oxygen-evolution potential was relatively flat, indicating a uniform capacity for photosynthesis in leaf mesophyll tissues. Two experimental approaches were used to estimate the photosynthetic performance of individual mesophyll cell layers when white light was applied to the adaxial leaf surface. These experiments indicated that oxygen was produced relatively uniformly across the mesophyll and that oxygen evolution increased with irradiance of the white light applied to the leaf surface. The measured profiles for oxygen evolution and capacity are flatter than previous measurements of profiles of fixed carbon and estimates of profiles for absorbed light within spinach leaves.  相似文献   

11.
Red (retro)-carotenoids accumulate in chloroplasts of Buxus sempervirens leaves during the process of winter leaf acclimation. As a result of their irregular presence, different leaf colour phenotypes can be found simultaneously in the same location. Five different colour phenotypes (green, brown, red, orange, and yellow), with a distinct pattern of pigment distribution and concentration, have been characterized. Leaf reddening due to the presence of anthocyanins or carotenoids, is a process frequently observed in plant species under photoinhibitory situations. Two main hypotheses have been proposed to explain the function of such colour change: antioxidative protection exerted by red-coloured molecules, and green light filtering. The potential photoprotective role of red (retro-) carotenoids as light filters was tested in Buxus sempervirens leaves. In shade leaves of this species the upper (adaxial) mesophyll of the lamina was replaced by the equivalent upper part of a different colour phenotype. These hybrid leaves were exposed to a photoinhibitory treatment in order to compare the photoprotective effect exerted by adaxial parts of phenotypes with a different proportion of red (retro)-carotenoids in the lower mesophyll of a shade leaf. The results indicated that the presence of red (retro)-carotenoids in the upper mesophyll did not increase photoprotection of the lower mesophyll when compared with chlorophyll, and the best protection was achieved by an upper green layer. This was due to the fact that the extent of photoinhibition was proportional to the amount of red light transmitted by the upper mesophyll and/or to the chlorophyll pool located above. These results do not exclude a protective function of carotenoids in the upper leaf layer, but imply that, at least under the conditions of this experiment, the accumulation of red pigments in the outer leaf layers does not increase photoprotection in the lower mesophyll.  相似文献   

12.
Light propagation and distribution inside leaves have been recognized as important processes influencing photosynthesis. Monochromatic light absorption across the mesophyll was measured using chlorophyll fluorescence generated from illumination of the cut edge (epi-illumination), as well as the adaxial or abaxial surfaces of the leaf. Species were selected that had basic leaf types: laminar leaf with adaxial palisade layer (Rhododendron catawbiense), needle with palisade (Abies fraseri), and needle without palisade (Picea rubens). Fluorescence was more evenly distributed across the mesophyll for adaxially illuminated leaves with a palisade cell layer, as well as for the needles (cylindrical) without palisade, when compared to fluorescence generated by abaxial illumination. Moreover, fluorescence from green light illumination remained high across the mesophyll of adaxially illuminated R. catawbiense, indicating a possible influence of mesophyll structure on internal light distribution beyond that of chlorophyll levels. These data support the idea that light propagation within the mesophyll is associated with asymmetric mesophyll structure, in particular the presence of palisade cell layers. In addition, we propose that the evolution of a more cylindrical leaf form, such as found in conifer species, may be a structural solution to excessive sunlight that replaces the highly differentiated mesophyll found in most laminar-leaved species.  相似文献   

13.
Using a laboratory-constructed system that can measure the gas exchange rates of two leaf surfaces separately, the light responses of the adaxial and abaxial stomata in intact leaves of sunflower ( Helianthus annuus L.) were investigated, keeping the intercellular CO2 concentration ( C i) at 300  µ L L−1. When evenly illuminating both sides of the leaf, the stomatal conductance ( g s) of the abaxial surface was higher than that of the adaxial surface at any light intensity. When each surface of the leaf was illuminated separately, both the adaxial and abaxial stomata were more sensitive to the light transmitted through the leaf (self-transmitted light) than to direct illumination. Relationships between the whole leaf photosynthetic rate ( A n) and the g s for each side highlighted a strong dependence of stomatal opening on mesophyll photosynthesis. Light transmitted through another leaf was more effective than the direct white light for the abaxial stomata, but not for the adaxial stomata. Moreover, green monochromatic light induced an opening of the abaxial stomata, but not of the adaxial stomata. As the proportion of blue light in the transmitted light is less than that in the white light, there may be some uncharacterized light responses, which are responsible for the opening of the abaxial stomata by the transmitted, green light.  相似文献   

14.
The localization of the key photoreductive and oxidative processes and some stress-protective reactions within leaves of mesophytic C3 plants were investigated. The role of light in determining the profile of Rubisco, glutamate oxaloacetate transaminase, catalase, fumarase, and cytochrome-c-oxidase across spinach leaves was examined by exposing leaves to illumination on either the adaxial or abaxial leaf surfaces. Oxygen evolution in fresh paradermal leaf sections and CO2 gas exchange in whole leaves under adaxial or abaxial illumination was also examined. The results showed that the palisade mesophyll is responsible for the midday depression of photosynthesis in spinach leaves. The photosynthetic apparatus was more sensitive to the light environment than the respiratory apparatus. Additionally, examination of the paradermal leaf sections by optical microscopy allowed us to describe two new types of parenchyma in spinach—pirum mesophyll and pillow spongy mesophyll. A hypothesis that oxaloacetate may protect the upper leaf tissue from the destructive influence of active oxygen is presented. The application of mathematical modeling shows that the pattern of enzymatic distribution across leaves abides by the principle of maximal ecological utility. Light regulation of carbon metabolism across leaves is discussed.  相似文献   

15.
Abstract. The distribution of chlorophyll fluorescence was measured within leaves of Medicago saliva with a fibre optic microprobe. Leaves were irradiated with broad band blue light (1000 μmol m−2s−1) and chlorophyll fluorescence was measured at 688 nm. The amount of fluorescence measured within the leaf depended upon the direction in which the probe was inserted. When the probe was advanced directly through the leaf from the shaded towards the irradiated surface, the maximum amount of detected fluorescence occurred near the boundary between the palisade and spongy mesophyll. When the probe was advanced through the leaf from the opposite direction maximum detected fluorescence was at the boundary between the epidermis and palisade. These results appear to be a consequence of the blue light gradient, which declined exponentially within the palisade but was counterbalanced by increasing chlorophyll content within the leaf. Modelling indicates that the measured distribution of chlorophyll fluorescence can be explained by relatively uniform emission of fluorescence throughout the palisade layer, indicating that the chloroplasts may be photosynthetically specialized to their light environment within the leaf.  相似文献   

16.
Intensity, spectral characteristics and localization of the UV-laser (337 nm) induced blue-green and red fluorescence emission of green, etiolated and white primary leaves of wheat seedlings were studied in a combined fluorospectral and fluoromicroscopic investigation. The blue-green fluorescence of the green leaf was characterized by a maximum near 450 nm (blue region) and a shoulder near 530 nm (green region), whereas the red chlorophyll fluorescence exhibited maxima in the near-red (F690) and far-red (F735). The etiolated leaf with some carotenoids and traces of chlorophyll a, in turn, showed a higher intensity of the blue-green fluorescence with a shoulder in the green region and a strong red fluorescence peak near 684 to 690 nm, the far-red chlorophyll fluorescence maximum (F735) was, however, absent. The norfluorazone-treated white leaf, free of chlorophylls and carotenoids, only exhibited blue-green fluorescence of a very high intensity. In green and etiolated leaves the blue-green fluorescence primarily derived from the cell walls of the epidermis and the red fluorescence from the chlorophyll a of the mesophyll cells. In white leaves the blue-green fluorescence emanated from all cell walls of epidermis, mesophyll and leaf vein bundles. The shape and intensity of the blue-green and red fluorescence emission is determined by the reabsorption properties of chlorophylls and carotenoids in the mesophyll, thus giving rise to quite different values of the various fluorescence ratios F450/F690, F450/F530, F450/F735 and F690/F735 in green and etiolated leaves.  相似文献   

17.
Limitations of carbon fixation within spinach leaves due to light and CO2 were investigated. Under equivalent photon fluxes, carbon fixation was higher when leaves were irradiated adaxially compared to abaxially. Maximal carbon fixation occurred in the middle of the palisade mesophyll under adaxial illumination, whereas, maximal carbon fixation occurred in the spongy mesophyll under abaxial illumination. Total carbon fixation and the pattern of carbon fixation across leaves were similar, when leaves were irradiated with 800 micromol quanta m(-2) s(-1) either adaxially alone or adaxially plus abaxially (1,600 micromol quanta m(-2) s(-1)). In contrast, when both leaf surfaces were irradiated simultaneously with 200 micromol quanta m(-2) s(-1), total carbon fixation increased and carbon fixation in the middle of the leaf was higher compared to leaves irradiated unilaterally with the low light. Feeding 14CO2 through either the adaxial or abaxial leaf surface did not change the pattern of carbon fixation across the leaf. Increasing 14CO2 pulse-feeding times from 5 s to 60 s allowed more 14CO2 to be fixed but did not change the pattern of 14CO2 fixation across the leaf. We concluded that in spinach, the distribution of both light and Rubisco activity within leaves has significant effects on the patterns of carbon fixation across leaves; whereas CO2 diffusion does not appear to affect the carbon fixation pattern within spinach leaves.  相似文献   

18.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

19.
Green Light Drives CO2 Fixation Deep within Leaves   总被引:5,自引:0,他引:5  
Maximal l4CO2-fixation in spinach occurs in the middle of thepalisade mesophyll [Nishio et al. (1993) Plant Cell 5: 953],however, ninety percent of the blue and red light is attenuatedin the upper twenty percent of a spinach leaf [Cui et al. (1991)Plant Cell Environ. 14: 493]. In this report, we showed thatgreen light drives 14CO2-fixation deep within spinach leavescompared to red and blue light. Blue light caused fixation mainlyin the palisade mesophyll of the leaf, whereas red light drovefixation slightly deeper into the leaf than did blue light.14CO2-fixation measured under green light resulted in less fixationin the upper epidermal layer (guard cells) and upper most palisademesophyll compared to red and blue light, but led to more fixationdeeper in the leaf than that caused by either red or blue light.Saturating white, red, or green light resulted in similar maximal14CO2-fixation rates, whereas under the highest irradiance ofblue light given, carbon fixation was not saturated, but itasymptotically approached the maximal 14CO2-fixation rates attainedunder the other types of light. The importance of green lightin photosynthesis is discussed. 1Supported in part by grants from Competitive Research GrantsOffice, U.S. Department of Agriculture (Nos. 91-37100-6672 and93-37100-8855).  相似文献   

20.
We compared photosynthetic and UV-B-absorbing pigment concentrations, gas-exchange rates and photosystem II (PSII) electron transport rates in leaves of pea (Pisum sativum mutant Argenteum) grown without UV-B or under an enhanced UV-B treatment (18 kJ m?2 biologically effective daily dose) in a greenhouse. We also compared the distribution of chlorophyll by depth within leaves of each treatment by using image analysis of chlorophyll autofluorescence. Ultraviolet-B treatment elicited putative protective responses such as an 80% increase in UV-B-absorbing compound concentrations (leaf-area basis), and a slight increase in mesophyll thickness (178 in controls compared to 191 μm in UV-B-treated leaves). However, photosynthetic rates of UV-B-treated leaves were only 80% of those of controls. This was paralleled by reductions in leaf conductance to water vapor (50% of controls) and intercellular CO2 concentrations, suggesting that stomatal limitations were at least partly responsible for lower photosynthetic rates under the UV-B treatment. Total chlorophyll concentrations (leaf-area basis) in UV-B-treated leaves were only 70% of controls, and there was a shift in the relative distribution of chlorophyll with depth in UV-B-treated leaves. In control leaves chlorophyll concentrations were highest near the adaxial surface of the upper palisade, dropped with depth and then increased slightly in the bottom of the spongy mesophyll nearest the abaxial surface. In contrast, in UV-B-treated leaves chlorophyll concentrations were lowest at the adaxial surface of the upper palisade and increased with depth through the leaf. The most notable treatment difference in chlorophyll concentrations was in the upper palisade near the adaxial surface of leaves, where we estimate that chlorophyll concentrations in each 1-μm-thick paradermal layer were about 50% lower in UV-B-treated leaves than in controls. We found reduced electron transport capacity in UV-B-treated leaves, based on lower maximum fluorescence (Fm), variable to maximum fluorescence ratios (F,/Fm) and quantum yield of PSII electron transport (Y). However, the above were assessed from fluorometer measurements on the adaxial leaf surface and may reflect the markedly lower chlorophyll concentrations in the upper palisade of UV-B-treated leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号