共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural and Functional Dissection of the Human Cytomegalovirus Immune Evasion Protein US6 总被引:1,自引:0,他引:1
The human cytomegalovirus (HCMV) protein US6 inhibits the transporter associated with antigen processing (TAP). Since TAP transports antigenic peptides into the endoplasmic reticulum for binding to major histocompatibility class I molecules, inhibition of the transporter by HCMV US6 impairs the presentation of viral antigens to cytotoxic T lymphocytes. HCMV US6 inhibits ATP binding by TAP, hence depriving TAP of the energy source it requires for peptide translocation, yet the molecular basis for the interaction between US6 and TAP is poorly understood. In this study we demonstrate that residues 89 to 108 of the HCMV US6 luminal domain are required for TAP inhibition, whereas sequences that flank this region stabilize the binding of the viral protein to TAP. In parallel, we demonstrate that chimpanzee cytomegalovirus (CCMV) US6 binds, but does not inhibit, human TAP. The sequence of CCMV US6 differs from that of HCMV US6 in the region corresponding to residues 89 to 108 of the HCMV protein. The substitution of this region of CCMV US6 with the corresponding residues from HCMV US6 generates a chimeric protein that inhibits human TAP and provides further evidence for the pivotal role of residues 89 to 108 of HCMV US6 in the inhibition of TAP. On the basis of these observations, we propose that there is a hierarchy of interactions between HCMV US6 and TAP, in which residues 89 to 108 of HCMV US6 interact with and inhibit TAP, whereas other parts of the viral protein also bind to TAP and stabilize this inhibitory interaction. 相似文献
2.
Matteo Gentili Xavier Lahaye Francesca Nadalin Guilherme P.F. Nader Emilia Puig Lombardi Solène Herve Nilushi S. De Silva Derek C. Rookhuizen Elina Zueva Christel Goudot Mathieu Maurin Aurore Bochnakian Sebastian Amigorena Matthieu Piel Daniele Fachinetti Arturo Londoño-Vallejo Nicolas Manel 《Cell reports》2019,26(13):3798
3.
Matteo Gentili Xavier Lahaye Francesca Nadalin Guilherme F.P. Nader Emilia Puig Lombardi Solène Herve Nilushi S. De Silva Derek C. Rookhuizen Elina Zueva Christel Goudot Mathieu Maurin Aurore Bochnakian Sebastian Amigorena Matthieu Piel Daniele Fachinetti Arturo Londoño-Vallejo Nicolas Manel 《Cell reports》2019,26(9):2377-2393.e13
4.
Elie J. Diner Dara L. Burdette Stephen C. Wilson Kathryn M. Monroe Colleen A. Kellenberger Mamoru Hyodo Yoshihiro Hayakawa Ming C. Hammond Russell E. Vance 《Cell reports》2013,3(5):1355-1361
- Download : Download full-size image
5.
6.
Recent immunocytological and molecular data show that heterochromaticnuclear regions, both constitutive and facultative, are modifieddifferently (cytosine hypermethylation and histone hypoacetylation)and late replicating, when compared to euchromatin. Intrusiveand/or additive (supernumerary) DNA sequences are often functionallysilenced; this is accompanied by their heterochromatinization.In this work we present a number of karyological studies onautotetraploid female cells of Silene latifolia (syn. Melandriumalbum). Immunofluorescence analyses do not indicate any globaldifferences in DNA methylation, histone H4 acetylation, andchromosome replication patterns which could arise as a consequenceof the duplication of the whole chromosome set of the originaldiploid genome. Similarly, the number of silver-positive nucleoliroughly correlates to the ploidy level. Early replication andH4 hyperacetylation have been detected at all subterminal chromosomeregions. This, together with cDNA in situ hybridization patterns,indicates the localization of gene-rich regions. DNA methylationand chromosome replication patterns, but not histone H4 acetylation,show differences among the four X chromosomes present: one tothree X chromosomes were observed as hypermethylated and/orlate replicating. Taken together, the data demonstrate thatthere is no overall silencing of the additional two sets ofautosomes in the tetraploid cells, but the X chromosomes couldbe subject to an irregular dosage compensation. Copyright 1999Annals of Botany Company DNA methylation, histone acetylation, polyploidy, replication patterns, sex chromosomes, Silene latifolia (syn.Melandrium album ). 相似文献
7.
8.
SIRT1 is a NAD+-dependent deacetylase that plays important roles in many cellular processes. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an open apo form and a closed conformation in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a β hairpin structure that complements the β sheet of the NAD+-binding domain, covering an essentially invariant hydrophobic surface. The apo form adopts a distinct open conformation, in which the smaller subdomain of SIRT1 undergoes a rotation with respect to the larger NAD+-binding subdomain. A biochemical analysis identifies key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain. 相似文献
9.
Structural and Functional Analyses of a Conserved Hydrophobic Pocket of Flavivirus Methyltransferase
Hongping Dong Lihui Liu Gang Zou Yiwei Zhao Zhong Li Siew Pheng Lim Pei-Yong Shi Hongmin Li 《The Journal of biological chemistry》2010,285(42):32586-32595
The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2′-O positions of the viral RNA cap (GpppA-RNA → m7GpppA-RNA → m7GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex with SIN inhibitor at 2.0-Å resolution revealed a flavivirus-conserved hydrophobic pocket located next to the AdoMet-binding site. The pocket is functionally critical in the viral replication and cap methylations. In addition, the N7 methylation efficiency was found to correlate with the viral replication ability. Thus, SIN analogs with modifications that interact with the hydrophobic pocket are potential specific inhibitors of flavivirus MTase. 相似文献
10.
11.
12.
13.
14.
Jennifer Paijo Marius D?ring Julia Spanier Elena Grabski Mohammed Nooruzzaman Tobias Schmidt Gregor Witte Martin Messerle Veit Hornung Volkhard Kaever Ulrich Kalinke 《PLoS pathogens》2016,12(4)
Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. 相似文献
15.
Kiana Toufighi Jae-Seong Yang Nuno Miguel Luis Salvador Aznar Benitah Ben Lehner Luis Serrano Christina Kiel 《PLoS computational biology》2015,11(5)
The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products (‘di-chromatic’), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation. 相似文献
16.
17.
Backgrounds
In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport.Results
In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae.Conclusions
Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae. 相似文献18.
19.
20.
Dergunova L. V. Raevskaya N. M. Vladychenskaya I. P. Limborska S. A. 《Molecular Biology》2003,37(2):273-280
Brain-specific human genes were studied over the recent years in the Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics. Clones Hfb1, Hmob3, and Hmob33 were selected from human brain cDNA libraries by differential screening. The clones were sequenced, mapped, and tested for expression in various human tissues. In vitro and in silico experiments identified Hfb1 as an earlier unknown complexin 2 gene (CPLX2) fragment, which codes for the large 3"-untranslated region of the CPLX2 mRNA. Hmob3 proved to correspond to an earlier unknown fragment of the large 3"-untranslated region of the human MAP1B mRNA. With Hfb1 and Hmob3, new terminal exons were revealed and exact structures established for CPLX2 and MAP1B. Hmob33 was identified as a fragment of the 3"-terminal exon of a new gene, MOB, which codes for a yet unknown evolutionarily conserved transmembrane protein. The structure of the deduced protein product was analyzed. 相似文献