首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca2+ concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca2+ levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca2+ levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca2+ channel blockers or phospholipase C inhibitors. These results indicate that Ca2+ acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca2+ in response to nitrate required for changes in expression of prototypical nitrate-responsive genes.Plants are sessile organisms that evolved sophisticated sensing and response mechanisms to adapt to changing environmental conditions. Calcium, a ubiquitous second messenger in all eukaryotes, has been implicated in plant signaling pathways (Harper et al., 2004; Hetherington and Brownlee, 2004; Reddy and Reddy, 2004; Hepler, 2005). Multiple abiotic and biotic cues elicit specific and distinct spatiotemporal patterns of change in the concentration of cytosolic Ca2+ ([Ca2+]cyt) in plants (Sanders et al., 2002; Hetherington and Brownlee, 2004; Reddy and Reddy, 2004; Hepler, 2005). Abscisic acid and heat shock treatments cause a rapid intracellular Ca2+ increase that is preceded by a transient increase in the level of inositol 1,4,5-trisphosphate (IP3; Sanchez and Chua, 2001; Zheng et al., 2012). Ca2+ signatures are detected, decoded, and transmitted to downstream responses by a set of Ca2+ binding proteins that functions as Ca2+ sensors (White and Broadley, 2003; Dodd et al., 2010).Nitrate is the main source of N in agriculture and a potent signal that regulates the expression of hundreds of genes (Wang et al., 2004; Vidal and Gutiérrez, 2008; Ho and Tsay, 2010). Despite progress in identifying genome-wide responses, only a handful of molecular components involved in nitrate signaling has been identified. Several pieces of evidence indicate that NITRATE TRANSPORTER1.1 (NRT1.1)/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3 (AtNPF6.3) is a nitrate sensor in Arabidopsis (Ho et al., 2009; Gojon et al., 2011; Bouguyon et al., 2015). NRT1.1/AtNPF6.3 is required for normal expression of more than 100 genes in response to nitrate in Arabidopsis roots (Wang et al., 2009). Downstream of NRT1.1/AtNPF6.3, CALCINEURIN B-LIKE INTERACTING SER/THR-PROTEINE KINASE8 (CIPK8) is required for normal nitrate-induced expression of primary nitrate response genes, and the CIPK23 kinase is able to control the switch from low to high affinity of NRT1.1/AtNPF6.3 (Ho et al., 2009; Hu et al., 2009; Ho and Tsay, 2010; Castaings et al., 2011). CIPKs act in concert with CALCINEURIN B-LIKE proteins, plant-specific calcium binding proteins that activate CIPKs to phosphorylate downstream targets (Albrecht et al., 2001). Early experiments using maize (Zea mays) and barley (Hordeum vulgare) detached leaves showed that nitrate induction of two nitrate primary response genes was altered by pretreating leaves with the calcium chelator EGTA or the calcium channel blocker LaCl3 (Sakakibara et al., 1997; Sueyoshi et al., 1999), suggesting an interplay between nitrate response and calcium-related signaling pathways. However, the role of calcium as a second messenger in the nitrate signaling pathway has not been directly addressed.We show that nitrate treatments cause a rapid increase of IP3 and [Ca2+]cyt levels and that blocking phospholipase C (PLC) activity inhibits both IP3 and [Ca2+]cyt increases after nitrate treatments. We provide evidence that NRT1.1/AtNPF6.3 is required for increasing both IP3 and [Ca2+]cyt in response to nitrate treatments. Altering [Ca2+]cyt or blocking PLC activity hinders regulation of gene expression of nitrate-responsive genes. Our results indicate that Ca2+ is a second messenger in the nitrate signaling pathway of Arabidopsis.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

18.
19.
Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3 to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3 was retained in roots of Xiangyou15. Moreover, NO3 concentration in xylem sap, [15N] shoot:root (S:R) and [NO3] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3 in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3 long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3 in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3 allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8.China is the largest consumer of nitrogen (N) fertilizer in the world; however, the average N use efficiency (NUE) in fertilizer is only around 35%, suggesting considerable potential for improvements (Shen et al., 2003; Wang et al., 2014). With the high amounts of N-fertilizer being used, crop yields are declining in some areas, where application is exceeding the optimum required for local field crops (Shen et al., 2003; Miller and Smith, 2008; Xu et al., 2012). The extremely low NUE results in waste of resources and environmental contamination, and also presents serious hazards for human health (Xu et al., 2012; Chen et al., 2014). Consequently, exploiting the maximum potential for improving NUE in crop plants will have practical significance for agriculture production and the environment (Zhang et al., 2010; Schroeder et al., 2013; Wang et al., 2014). Elucidating the genetic and physiological regulatory mechanisms governing NUE in plants will allow breeding crops and varieties with higher NUE.Ammonium (NH4+) and nitrate (NO3) are the main N species absorbed and utilized by crops, and NO3 accumulation and utilization are of major emphasis for N nutrient studies in dry land crops, such as Brassica napus. Several studies revealed the close relationship between NO3 content and NUE in plant tissues (Shen et al., 2003; Zhang et al., 2012; Tang et al., 2013; Han et al., 2015a). When plants are sufficiently illuminated, NO3 assimilation efficiency significantly increase in shoots compared with roots (Smirnoff and Stewart, 1985; Tang et al., 2013). Consequently, under daytime with optimal illumination, higher proportion of NO3 in plant tissue is transported from root to shoot, as an advantageous physiological adaptation that reduces the cost of energy for metabolism (Tang et al., 2013). NO3 assimilation in plant shoots can therefore take advantage of solar energy while improving NUE (Smirnoff and Stewart, 1985; Andrews, 1986; Tang et al., 2012, 2013).The NO3 long-distance transport and distribution between root and shoot is regulated by two genes encoding long transport mechanisms. NRT1.5 is responsible for xylem NO3 loading, while NRT1.8 is responsible for xylem NO3 unloading (Lin et al., 2008; Li et al., 2010). Expression of the two genes is influenced by NO3 concentration. NRT1.5 is strongly induced by NO3 (Lin et al., 2008), while NRT1.8 expression is extremely up-regulated in nrt1.5 mutants (Chen et al., 2012). A negative correlation between the extents of expression of the two genes was observed when plants are subjected to abiotic stresses (Chen et al., 2012). Moreover, expression of NRT1.5 is strongly inhibited by 1-aminocyclopropane-1-carboxylic acid (ACC) and methyl jasmonate (MeJA), whereas the expression of NRT1.8 is significantly up-regulated (Zhang et al., 2014). Based on these studies, we argue that the expression and functioning of NO3 long-distance transport genes NRT1.5 and NRT1.8 are regulated by cytosolic NO3 concentration. In addition, the vacuolar and cytosolic NO3 distribution is likely regulated by proton pumps located within the tonoplast (V-ATPase and V-PPase; Granstedt and Huffaker, 1982; Glass et al., 2002; Krebs et al., 2010). Therefore, NO3 use efficiency must be affected by NO3 long-distant transport (between shoot and root) and short-distant transport (between vacuole and cytosol). However, the physiological mechanisms controlling this regulation are still obscure.Previous studies showed that the chloride channel protein (CLCa) is mainly responsible for vacuole NO3 short-distance transport, as it is the main channel for NO3 movement between the vacuoles and cytosol (De Angeli et al., 2006; Wege et al., 2014). The vacuole proton-pumps (V-ATPase and V-PPase) located in the tonoplast supply energy for active transport of NO3 and accumulation within the vacuole (Gaxiola et al., 2001; Brüx et al., 2008; Krebs et al., 2010). Despite the fact about 90% of the volume of mature plant cells is occupied by vacuoles, vacuolar NO3 cannot be efficiently assimilated because the enzyme nitrate reductase (NR) is cytosolic (Shen et al., 2003; Han et al., 2015a). However, retranslocation of NO3 from the vacuole to the cytosol will permit its immediate assimilation and utilization.Generally, NO3 concentrations in plant cell vacuoles and the cytoplasm are in the range of 30–50 mol m−3 and 3–5 mol m−3, respectively (Martinoia et al., 1981, 2000). Because vacuoles are obviously the organelle for high NO3 accumulation and storage in plant tissues, their function in NO3 use efficiency cannot be ignored (Martinoia et al., 1981; Zhang et al., 2012; Han et al., 2015b). NO3 assimilatory system in the cytoplasm is sufficient for its assimilation when it is transported out of the vacuoles. Therefore, NO3 use efficiency could in part be dependent on vacuolar-cytosolic NO3 short-distance transport in plant tissues (Martinoia et al., 1981; Shen et al., 2003; Zhang et al., 2012; Han et al., 2015a).Evidently, NO3 use efficiency is regulated by both NO3 long-distance transport from root to shoot and short-distance transport and distribution between vacuoles and cytoplasm within cells (Glass et al., 2002; Dechorgnat et al., 2011; Han et al., 2015a). Although vacuoles compartment excess NO3 that accumulates in plant cells (Granstedt and Huffaker, 1982; Krebs et al., 2010), neither NO3 inducible NR genes (NIA1 and NIA2; Fan et al., 2007; Han et al., 2015a) nor the NO3 long-distance transport gene NRT1.5 (Lin et al., 2008) are regulated by vacuolar NO3, even though they are essential for NO3 assimilation. Only NO3 transported from the vacuole to the cytosol can play a role in regulating NO3 inducible genes. Consequently, we argue that both NO3 assimilation in cells and its long-distance transport from root to shoot are regulated by cytosolic NO3 concentration. However, this hypothesis needs to be substantiated. The mechanisms underlying both NO3 short-distance (Gaxiola et al., 2001; De Angeli et al., 2006; Brüx et al., 2008; Krebs et al., 2010) and long-distance transport (Lin et al., 2008; Li et al., 2010) have been previously investigated, yet the underlying mechanisms regulating the flux of NO3 and the obvious relationship between the two transport pathways, as well as their relation to NUE, are not well understood.The NRT family of genes play a partial role in vacuolar NO3 accumulation in petioles (Chiu et al., 2004) and seed tissues (Chopin et al., 2007), whereas the proton pumps and CLCa system in the tonoplast play a major role in accumulating NO3 in vacuoles (Gaxiola et al., 2001; De Angeli et al., 2006; Brüx et al., 2008; Krebs et al., 2010). The vacuolar NO3 short-distance transport system is spread throughout the plant tissues and is the principal means by which vacuolar NO3 short-distance transport and distribution is controlled (De Angeli et al., 2006; Krebs et al., 2010).The NRT genes seem to work synergistically to control NO3 long-distance transport between roots and shoots. NRT1.9 is responsible for NO3 loading into the phloem (Wang and Tsay, 2011), whereas NO3 loading and unloading into xylem are regulated by NRT1.5 and NRT1.8, respectively (Lin et al., 2008; Li et al.; 2010). Phloem transport mainly involves organic N; the inorganic-N (NO3) concentrations in the phloem sap are typically very low, ranging from one-tenth to one-hundredth of that of the inorganic-N in xylem sap (Lin et al., 2008; Fan et al., 2009). Therefore, this study focused on NO3 short-distance transport mediated through the tonoplast proton pumps and the CLCa system and the long-distant transport mechanisms responsible for xylem NO3 loading and unloading via NRT1.5 and NRT1.8, respectively.Questions related to how long- and short-distance transport of NO3 are coupled in plant tissues and their role in determining NUE were addressed using a pair of high- and low-NUE B. napus genotypes and Arabidopsis (Arabidopsis thaliana). Application of proton pump inhibitors and ACC in the former, and use of mutants with defective proton pumps in the latter, allowed experimental distinction of the physiological mechanisms regulating these processes. Data presented here provide strong evidence from both model plants supporting this linkage and strongly suggest that cytosolic NO3 concentration in roots regulates NO3 long-distance transport from roots to shoots. We also investigated how NO3 concentration in plant tissues would be affected by NO3 long-distance transport, vacuolar NO3 sequestration, and the ensuing relationship with NO3 use efficiency. We also proposed the physiological mechanisms likely to be important for enhancing NO3 use efficiency in plants. These findings will provide scientific rationales for improving NUE in important industrial and food crops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号