首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Innovative applications of cell therapy products (CTPs) derived from human pluripotent stem cells (hPSCs) in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs) using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs) or human neurons at the ratio of 0.001%–0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process.  相似文献   

2.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.  相似文献   

3.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.  相似文献   

4.
Cell surface glycoconjugates are used as markers for undifferentiated pluripotent stem cells. Here, antibody binding and mass spectrometry characterization of acid glycosphingolipids isolated from a large number (1 × 109 cells) of human embryonic stem cell (hESC) lines allowed identification of several novel acid glycosphingolipids, like the gangliosides sialyl-lactotetraosylceramide and sialyl-globotetraosylceramide, and the sulfated glycosphingolipids sulfatide, sulf-lactosylceramide, and sulf-globopentaosylceramide. A high cell surface expression of sialyl-lactotetra on hESC and human induced pluripotent stem cells (hiPSC) was demonstrated by flow cytometry, immunohistochemistry, and electron microscopy, whereas sulfated glycosphingolipids were only found in intracellular compartments. Immunohistochemistry showed distinct cell surface anti-sialyl-lactotetra staining on all seven hESC lines and three hiPSC lines analyzed, whereas no staining of hESC-derived hepatocyte-like or cardiomyocyte-like cells was obtained. Upon differentiation of hiPSC into hepatocyte-like cells, the sialyl-lactotetra epitope was rapidly down-regulated and not detectable after 14 days. These findings identify sialyl-lactotetra as a promising marker of undifferentiated human pluripotent stem cells.  相似文献   

5.
The propagation of human pluripotent stem cells (hPSCs) in conditioned medium derived from human cells in feeder-free culture conditions has been of interest. Nevertheless, an ideal humanized ex vivo feeder-free propagation method for hPSCs has not been developed; currently, additional exogenous substrates including basic fibroblast growth factor (bFGF), a master hPSC-sustaining factor, is added to all of culture media and synthetic substrata such as Matrigel or laminin are used in all feeder-free cultures. Recently, our group developed a simple and efficient protocol for the propagation of hPSCs using only conditioned media derived from the human placenta on a gelatin-coated dish without additional exogenous supplementation or synthetic substrata specific to hPSCs. This protocol has not been reported previously and might enable researchers to propagate hPSCs efficiently in humanized culture conditions. Additionally, this model obviates hPSC contamination risks by animal products such as viruses or unknown proteins. Furthermore, this system facilitates easy mass production of hPSCs using the gelatin coating, which is simple to handle, dramatically decreases the overall costs of ex vivo hPSC maintenance.  相似文献   

6.
Maintenance and differentiation of human pluripotent stem cells (hPSCs) usually requires culture on a substrate for cell adhesion. A commonly used substratum is Matrigel purified from Engelbreth—Holm—Swarm sarcoma cells, and consists of a complex mixture of extracellular matrix proteins, proteoglycans, and growth factors. Several studies have successfully induced differentiation of hepatocyte-like cells from hPSCs. However, most of these studies have used Matrigel as a cell adhesion substrate, which is not a defined culture condition. In an attempt to generate a substratum that supports undifferentiated properties and differentiation into hepatic lineage cells, we designed novel substrates consisting of vitronectin fragments fused to the IgG Fc domain. hPSCs adhered to these substrates via interactions between integrins and the RGD (Arg-Gly-Asp) motif, and the cells maintained their undifferentiated phenotypes. Using a previously established differentiation protocol, hPSCs were efficiently differentiated into mesendodermal and hepatic lineage cells on a vitronectin fragment-containing substrate. We found that full-length vitronectin did not support stable cell adhesion during the specification stage. Furthermore, the vitronectin fragment with the minimal RGD-containing domain was sufficient for differentiation of human induced pluripotent stem cells into hepatic lineage cells under completely defined conditions that facilitate the clinical application of cells differentiated from hPSCs.  相似文献   

7.
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) in suspension culture. This culture technique was successfully tested on two hiPSC clones, three hESC lines and on a nonhuman primate ESC line. It is based on a defined medium and single-cell inoculation, but it does not require culture preadaptation, use of microcarriers or any other matrices. Over a time course of 4-7 d, hPSCs can be expanded up to sixfold. Preparation of a high-density culture and its subsequent translation to scalable stirred suspension in Erlenmeyer flasks and stirred spinner flasks are also feasible. Importantly, hPSCs maintain pluripotency and karyotype stability for more than ten passages.  相似文献   

8.
人多潜能干细胞(hPSC)包括人胚胎干细胞(hESC)和诱导性多潜能干细胞(hiPSC),理论上具有分化成为人类所有细胞类型的能力.基于hPSC的基因打靶技术,不但可以纠正人基因组中的遗传突变用于细胞治疗,还可以通过反向遗传学的方式向hPSC引入疾病特异的突变.将携带人类疾病遗传基因的hPSC分化为特定的细胞类型,在理论上可以在体外模拟人类疾病的发生,研究人类疾病发生的机理,并建立体外筛选平台寻找治疗性药物.基因编辑和干细胞技术的结合将为人类疾病的机制研究和再生医学治疗带来革命性的突破.  相似文献   

9.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.  相似文献   

10.
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson’s disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development, A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here, we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons, which mimics embryonic DA neuron development. In our protocol, we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method, and then convert the FP cells to A9 DA neurons, which could be maintained in vitro for several months. This efficient, repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients, in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.  相似文献   

11.
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.  相似文献   

12.
人多潜能干细胞(hPSC)包括人胚胎干细胞(hESC)和诱导性多潜能干细胞(hiPSC),理论上具有分化成为人类所有细胞类型的能力.基于hPSC的基因打靶技术,不但可以纠正人基因组中的遗传突变用于细胞治疗,还可以通过反向遗传学的方式向hPSC引入疾病特异的突变.将携带人类疾病遗传基因的hPSC分化为特定的细胞类型,在理论上可以在体外模拟人类疾病的发生,研究人类疾病发生的机理,并建立体外筛选平台寻找治疗性药物.基因编辑和干细胞技术的结合将为人类疾病的机制研究和再生医学治疗带来革命性的突破.  相似文献   

13.
Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions.  相似文献   

14.
We have developed and validated a microporous poly(ethylene terephthalate) membrane-based indirect co-culture system for human pluripotent stem cell (hPSC) propagation, which allows real-time conditioning of the culture medium with human fibroblasts while maintaining the complete separation of the two cell types. The propagation and pluripotent characteristics of a human embryonic stem cell (hESC) line and a human induced pluripotent stem cell (hiPSC) line were studied in prolonged culture in this system. We report that hPSCs cultured on membranes by indirect co-culture with fibroblasts were indistinguishable by multiple criteria from hPSCs cultured directly on a fibroblast feeder layer. Thus this co-culture system is a significant advance in hPSC culture methods, providing a facile stem cell expansion system with continuous medium conditioning while preventing mixing of hPSCs and feeder cells. This membrane culture method will enable testing of novel feeder cells and differentiation studies using co-culture with other cell types, and will simplify stepwise changes in culture conditions for staged differentiation protocols.  相似文献   

15.
Cardiac differentiation of human pluripotent stems cells (hPSCs) is typically carried out in suspension cell aggregates. Conventional aggregate formation of hPSCs involves dissociating cell colonies into smaller clumps, with size control of the clumps crudely controlled by pipetting the cell suspension until the desired clump size is achieved. One of the main challenges of conventional aggregate-based cardiac differentiation of hPSCs is that culture heterogeneity and spatial disorganization lead to variable and inefficient cardiomyocyte yield. We and others have previously reported that human embryonic stem cell (hESC) aggregate size can be modulated to optimize cardiac induction efficiency. We have addressed this challenge by employing a scalable, microwell-based approach to control physical parameters of aggregate formation, specifically aggregate size and shape. The method we describe here consists of forced aggregation of defined hPSC numbers in microwells, and the subsequent culture of these aggregates in conditions that direct cardiac induction. This protocol can be readily scaled depending on the size and number of wells used. Using this method, we can consistently achieve culture outputs with cardiomyocyte frequencies greater than 70%.  相似文献   

16.
Much of the excitement generated by induced pluripotent stem cell technology is concerned with the possibility of disease modeling as well as the potential for personalized cell therapy. However, to pursue this it is important to understand the ‘normal’ pluripotent state including its inherent variability. We have performed various molecular profiling assays for 21 hESC lines and 8 hiPSC lines to generate a comprehensive snapshot of the undifferentiated state of pluripotent stem cells. Analysis of the gene expression data revealed no iPSC-specific gene expression pattern in accordance with previous reports. We further compared cells, differentiated as embryoid bodies in 2 media proposed to initiate differentiation towards separate cell fates, as well as 20 adult tissues. From this analysis we have generated a gene list which defines pluripotency and establishes a baseline for the pluripotent state. Finally, we provide lists of genes enriched under both differentiation conditions which show the proposed bias toward independent cell fates.  相似文献   

17.

Objectives

Kidney disease is emerging as a critical medical problem worldwide. Because of limited treatment options for the damaged kidney, stem cell treatment is becoming an alternative therapeutic approach. Of many possible human stem cell sources, pluripotent stem cells are most attractive due to their self-renewal and pluripotent capacity. However, little is known about the derivation of renal lineage cells from human pluripotent stem cells (hPSCs). In this study, we developed a novel protocol for differentiation of nephron progenitor cells (NPCs) from hPSCs in a serum- and feeder-free system.

Materials and Methods

We designed step-wise protocols for differentiation of human pluripotent stem cells toward primitive streak, intermediate mesoderm and NPCs by recapitulating normal nephrogenesis. Expression of key marker genes was examined by RT-PCR, real time RT-PCR and immunocytochemistry. Each experiment was independently performed three times to confirm its reproducibility.

Results

After modification of culture period and concentration of exogenous factors, hPSCs can differentiate into NPCs that markedly express specific marker genes such as SIX2, GDNF, HOXD11, WT1 and CITED1 in addition to OSR1, PAX2, SALL1 and EYA1. Moreover, NPCs possess the potential of bidirectional differentiation into both renal tubular epithelial cells and glomerular podocytes in defined culture conditions. In particular, approximately 70% of SYN-positive cells were obtained from hPSC-derived NPCs after podocytes induction. NPCs can also form in vitro tubule-like structures in three dimensional culture systems.

Conclusions

Our novel protocol for hPSCs differentiation into NPCs can be useful for producing alternative sources of cell replacement therapy and disease modeling for human kidney diseases.  相似文献   

18.
Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.  相似文献   

19.
Perhaps one of the most significant achievements in modern science is the discovery of human induced pluripotent stem cells (hiPSCs), which have paved the way for regeneration therapy using patients’ own cells. Cardiomyocytes differentiated from hiPSCs (hiPSC-CMs) could be used for modelling patients with heart failure, for testing new drugs, and for cellular therapy in the future. However, the present cardiomyocyte differentiation protocols exhibit variable differentiation efficiency across different hiPSC lines, which inhibit the application of this technology significantly. Here, we demonstrate a novel myocyte differentiation protocol that can yield a significant, high percentage of cardiac myocyte differentiation (>85%) in 2 hiPSC lines, which makes the fabrication of a human cardiac muscle patch possible. The established hiPSCs cell lines being examined include the transgene integrated UCBiPS7 derived from cord blood cells and non-integrated PCBC16iPS from skin fibroblasts. The results indicate that hiPSC-CMs derived from established hiPSC lines respond to adrenergic or acetylcholine stimulation and beat regularly for greater than 60 days. This data also demonstrates that this novel differentiation protocol can efficiently generate hiPSC-CMs from iPSC lines that are derived not only from fibroblasts, but also from blood mononuclear cells.  相似文献   

20.
Data suggest that clinical applications of human induced pluripotent stem cells (hiPSCs) will be realized. Nonetheless, clinical applications will require hiPSCs that are free of exogenous DNA and that can be manufactured through Good Manufacturing Practice (GMP). Optimally, derivation of hiPSCs should be rapid and efficient in order to minimize manipulations, reduce potential for accumulation of mutations and minimize financial costs. Previous studies reported the use of modified synthetic mRNAs to reprogram fibroblasts to a pluripotent state. Here, we provide an optimized, fully chemically defined and feeder-free protocol for the derivation of hiPSCs using synthetic mRNAs. The protocol results in derivation of fully reprogrammed hiPSC lines from adult dermal fibroblasts in less than two weeks. The hiPSC lines were successfully tested for their identity, purity, stability and safety at a GMP facility and cryopreserved. To our knowledge, as a proof of principle, these are the first integration-free iPSCs lines that were reproducibly generated through synthetic mRNA reprogramming that could be putatively used for clinical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号