首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cell wall fraction of the gram-positive, nontoxic Corynebacterium diphtheriae strain C8r(−) Tox (= ATCC 11913) contained a channel-forming protein, as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent-treated cell walls and in extracts of whole cells obtained using organic solvents. The protein had an apparent molecular mass of about 66 kDa as determined on Tricine-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and consisted of subunits having a molecular mass of about 5 kDa. Single-channel experiments with the purified protein suggested that the protein formed channels with a single-channel conductance of 2.25 nS in 1 M KCl. Further single-channel analysis suggested that the cell wall channel is wide and water filled because it has only slight selectivity for cations over anions and its conductance followed the mobility sequence of cations and anions in the aqueous phase. Antibodies raised against PorA, the subunit of the cell wall channel of Corynebacterium glutamicum, detected both monomers and oligomers of the isolated protein, suggesting that there are highly conserved epitopes in the cell wall channels of C. diphtheriae and PorA. Localization of the protein on the cell surface was confirmed by an enzyme-linked immunosorbent assay. The prospective homology of PorA with the cell wall channel of C. diphtheriae was used to identify the cell wall channel gene, cdporA, in the known genome of C. diphtheriae. The gene and its flanking regions were cloned and sequenced. CdporA is a protein that is 43 amino acids long and does not have a leader sequence. cdporA was expressed in a C. glutamicum strain that lacked the major outer membrane channels PorA and PorH. Organic solvent extracts of the transformed cells formed in lipid bilayer membranes the same channels as the purified CdporA protein of C. diphtheriae formed, suggesting that the expressed protein is able to complement the PorA and PorH deficiency of the C. glutamicum strain. The study is the first report of a cell wall channel in a pathogenic Corynebacterium strain.  相似文献   

2.
The mycolic-acid layer of certain gram-positive bacteria, the mycolata, represents an additional permeability barrier for the permeation of small water-soluble solutes. Consequently, it was shown in recent years that the mycolic acid layer of individual bacteria of the group mycolata contains pores, called porins, for the passage of hydrophilic solutes. Corynebacterium amycolatum, a pathogenic Corynebacterium species, belongs to the Corynebacteriaceae family but it lacks corynomycolic acids in its cell wall. Despite the absence of corynomycolic acids the cell wall of C. amycolatum contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of C. amycolatum. Based on partial sequencing of the protein responsible for channel formation derived from C. amycolatum ATCC 49368 we were able to identify the gene coram0001_1986 within the known genome sequence of C. amycolatum SK46 that codes for the cell wall channel. The corresponding gene of C. amycolatum ATCC 49368 was cloned into the plasmid pXHis for its expression in Corynebacterium glutamicum ?porA?porH. Biophysical characterization of the purified protein (PorAcoram) suggested that coram0001_1986 is indeed the gene coding for the pore-forming protein PorAcoram in C. amycolatum ATCC 49368. The protein belongs to the DUF (Domains of Unknown Function) 3068 superfamily of proteins, mainly found in bacteria from the family Corynebacteriaceae. The nearest relative to PorAcoram within this family is an ORF which codes for PorAcres, which was also recognized in reconstitution experiments as a channel-forming protein in Corynebacterium resistens.  相似文献   

3.
4.
The cell wall of Corynebacterium glutamicum contains the cation-selective channel (porin) PorAC.glut and the anion-selective channel PorBC.glut for the passage of hydrophilic solutes. Lipid bilayer experiments with organic solvent extracts of whole C. glutamicum cells cultivated in minimal medium suggested that also another cation-selective channel-forming protein, named PorHC.glut, is present in C. glutamicum. The protein was purified to homogeneity by fast-protein liquid chromatography across a HiTrap-Q column. The pure protein had an apparent molecular mass of about 12 kDa on SDS-PAGE. Western blot analysis suggested that the cell wall channel is presumably formed by protein oligomers. The purified protein forms cation-selective channels with an average single-channel conductance of about 2.5 nS in 1 M KCl in the lipid bilayer assay. The PorHC.glut protein was partially sequenced, and based on the resulting amino acid sequence, the corresponding gene, designated as porHC.glut, was identified in the published genome sequence of C. glutamicum ATCC13032. PorHC.glut contains only the inducer methionine but no N-terminal extension, which suggests that the export and assembly of the protein follow a yet unknown pathway. PorHC.glut is coded in the bacterial chromosome by a gene that is localized in the vicinity of porAC.glut, within a putative operon of 13 genes. RT-PCR revealed that both porins are cotranscribed. They coexist according to immunological detection experiments in the cell wall of C. glutamicum together with PorBC.glut and PorCC.glut.  相似文献   

5.
Detergent extracts of whole cells of the Gram-positive bacterium Tsukamurella inchonensis ATCC 700082, which belongs to the mycolata, were studied for the presence of ion-permeable channels using lipid bilayer experiments. One channel with a conductance of about 4.5 nS in 1 M KCl was identified in the extracts. The channel-forming protein was purified to homogeneity by preparative SDS-PAGE. The protein responsible for channel-forming activity had an apparent molecular mass of about 33 kDa as judged by SDS-PAGE. Interestingly, the protein showed cross-reactivity with polyclonal antibodies raised against a polypeptide derived from MspA of Mycobacterium smegmatis similarly as the cell wall channel of Mycobacterium phlei. Primers derived from mspA were used to clone and sequence the gene of the cell wall channels of T. inchonensis (named tipA for T. inchonensis porin A) and M. phlei (named mppA for M. phlei porin A). Surprisingly, both genes, tipA and mppA, were found to be identical to mspA of M. smegmatis, indicating that the genomes of T. inchonensis, M. phlei and M. smegmatis contain the same genes for the major cell wall channel. RT-PCR revealed that tipA is transcribed in T. inchonensis and mppA in M. phlei. The results suggest that despite a certain distance between the three organisms, their genomes contain the same gene coding for the major cell wall channel, with a molecular mass of 22 kDa for the monomer.  相似文献   

6.
In this communication it is demonstrated that the cell wall of the gram-positive bacterium Micromonospora purpurea contains a cell wall channel for the passage of hydrophilic solutes. The channel-forming protein was identified in sucrose step-density-gradient fractions of the cell envelope and in whole cell extracts using either organic solvent or detergent and the lipid bilayer technique. The fractions of the sucrose step-density centrifugation were assayed for NADH-oxidase activity and for the formation of ion-permeable channels in lipid bilayers. The highest NADH-oxidase activity and the highest channel-forming ability were found in different fractions. The cell wall fraction was identified by the presence of meso-diaminopimelic acid and contained an ion-permeable channel with the extremely high single-channel conductance of about 14 nS in 1 M KCl. The channel-forming unit was purified to homogeneity by FPLC on a HiTrap-Q column. It was identified as a heat- and SDS-resistant 200-kDa band on SDS-PAGE and formed the same general diffusion pores in lipid bilayer membranes as those formed by detergent extracts of the cell wall fraction of the sucrose step-density centrifugation. The channels were slightly selective for potassium ions over chloride, possibly caused by an excess of negative charges in or near the channel.  相似文献   

7.
The outer membrane of the thermophilic bacterium Thermus thermophilus was isolated using sucrose step gradient centrifugation. Its detergent extracts contained an ion-permeable channel with an extremely high single-channel conductance of 20 nS in 1 M KCl. The channel protein was purified by preparative sodium dodecyl sulfate (SDS)-polyacylamide gel electrophoresis. It has a high molecular mass of 185 kDa, and its channel-forming ability resists boiling in SDS for 10 min.  相似文献   

8.
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges.  相似文献   

9.
Caulobacter crescentus is an oligotrophic bacterium that lives in dilute organic environments such as soil and freshwater. This bacterium represents an interesting model for cellular differentiation and regulation because daughter cells after division have different forms: one is motile while the other is non-motile and can adhere to surfaces. Interestingly, the known genome of C. crescentus does not contain genes predicted to code for outer membrane porins of the OmpF/C general diffusion type present in enteric bacteria or those coding for specific porins selective for classes of substrates. Instead, genes coding for 67 TonB-dependent outer membrane receptors have been identified, suggesting that active transport of specific nutrients may be the norm. Here, we report that high channel-forming activity was observed with crude outer membrane extracts of C. crescentus in lipid bilayer experiments, indicating that the outer membrane of C. crescentus contained an ion-permeable channel with a single-channel conductance of about 120 pS in 1M KCl. The channel-forming protein with an apparent molecular mass of about 20 kDa was purified to homogeneity. Partial protein sequencing of the protein indicated it was a member of the OmpW family of outer membrane proteins from Gram-negative bacteria. This channel was not observed in reconstitution experiments with crude outer membrane extracts of an OmpW deficient C. crescentus mutant. Biophysical analysis of the C. crescentus OmpW suggested that it has features that are special for general diffusion porins of Gram-negative outer membranes because it was not a wide aqueous channel. Furthermore, OmpW of C. crescentus seems to be different to known OmpW porins and has a preference for ions, in particular cations. A putative model for OmpW of C. crescentus was built on the basis of the known 3D-structures of OmpW of Escherichia coli and OprG of Pseudomonas aeruginosa using homology modeling. A comparison of the two known structures with the model of OmpW of C. crescentus suggested that it has a more hydrophilic interior and possibly a larger diameter.  相似文献   

10.
Protein P, an anion-specific channel-forming protein from the outer membrane of Pseudomonas aeruginosa was chemically modified by acetylation and syccinylation of its accessible amino groups. The chemically modified protein retained its ability to form oligomers on sodium dodecyl sulfate polyacrylamide gels, whereas only the acetylated protein formed channels in reconstitution experiments with lipid bilayers. Acetylated protein P demonstrated a substantially reduced mean single channel conductance (25 pS at 1 M KCl) compared to the native protein P channels (250 pS at 1 M KCl) when reconstituted into black lipid bilayer membranes. The homogeneous size distribution of single-channel conductances suggested that all of the protein P molecules had been acetylated. Zero-current potential measurements demonstrated that the acetylated protein P channel was only weakly selective for anions and allowed the permeation of cations, in contrast to the native protein P channels, which were more than 100-fold selective for anions over cations. The dependence of conductance on salt concentration was changed upon acetylation, in that acetylated protein P demonstrated a linear concentration-conductance relationship, whereas native protein P channels became saturated at high salt concentrations. These data strongly suggested that the basis of anion selectivity for native protein P channels is fixed amino groups. In agreement with this, we could demonstrate a 2.5-fold decrease in single-channel conductance between pH 7 and pH 9, between which pH values the ?-amino groups of amino acids would start to become deprotonated. Two alternative schemes for the topography of the protein P channel and localization of the fixed amino groups are presented and discussed.  相似文献   

11.
We have identified in organic solvent extracts of whole cells of the gram-positive pathogen Rhodococcus equi two channel-forming proteins with different and complementary properties. The isolated proteins were able to increase the specific conductance of artificial lipid bilayer membranes made from phosphatidylcholine-phosphatidylserine mixtures by the formation of channels able to be permeated by ions. The channel-forming protein PorA(Req) (R. equi pore A) is characterized by the formation of cation-selective channels, which are voltage gated. PorA(Req) has a single-channel conductance of 4 nS in 1 M KCl and shows high permeability for positively charged solutes because of the presence of negative point charges. According to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein has an apparent molecular mass of about 67 kDa. The analysis (using the effect of negative charges on channel conductance) of the concentration dependence of the single-channel conductance suggested that the diameter of the cell wall channel is about 2.0 nm. The second channel (formed by PorB(Req) [R. equi pore B]) shows a preferred movement of anions through the channel and is not voltage gated. This channel shows a single-channel conductance of 300 pS in 1 M KCl and is characterized by the presence of positive point charges in or near the channel mouth. Based on SDS-PAGE, the apparent molecular mass of the channel-forming protein is about 11 kDa. Channel-forming properties of the investigated cell wall porins were compared with those of others isolated from mycolic acid-containing actinomycetes. We present here the first report of a fully characterized anion-selective cell wall channel from a member of the order Actinomycetales.  相似文献   

12.
The gram-positive bacterium Mycobacterium phlei was treated with detergents. Reconstitution experiments using lipid bilayers suggested that the detergent extracts contain a channel forming protein. The protein was purified to homogeneity by preparative SDS-PAGE and identified as a protein with an apparent molecular mass of about 135 kDa. The channel-forming unit dissociated into subunits with a molecular mass of about 22 kDa when it was boiled in 80% dimethylsulfoxid (DMSO). The channel has on average a single channel conductance of 4.5 nS in 1 m KCl and is highly voltage-dependent in an asymmetric fashion when the protein is added to only one side of the membrane. Zero-current membrane potential measurements with different salts implied that the channel is highly cation-selective because of negative point charges in or near the channel mouth. Analysis of the single-channel conductance as a function of the hydrated cation radii using the Renkin correction factor and the effect of the negative point charges on the single-channel conductance suggest that the diameter of the cell wall channel is about 1.8 to 2.0 nm. The channel properties were compared with those of other members of the mycolata and suggest that these channels share common features. Southern blots demonstrated that the chromosome of M. phlei and other mycolata tested contain homologous sequences to mspA (gene of the cell wall porin of Mycobacterium smegmatis). Received: 22 December 2000/Revised: 10 April 2001  相似文献   

13.
Detergent extracts of cell envelopes of the gliding bacterium Herpetosiphon aurantiacus formed channels in lipid bilayers. Fast protein liquid chromatography across a HiTrap-Q cation-exchange column demonstrated that a 45-kDa protein forms the channel. The observation of a channel-forming protein suggests that Herpetosiphon aurantiacus Hp a2 has a permeability barrier on its surface.  相似文献   

14.
Clinical and environmental-associated strains (n = 17), genotypically related to Corynebacterium spp., yet distinct from any species of the genus Corynebacterium with validly published names, have been isolated during the last 20 years and tentatively identified as Corynebacterium sanguinis, although the combination, “Corynebacterium sanguinis” was never validly published. The comprehensive genotypic and phenotypic characterisations and genomic analyses in this study support the proposal for recognizing the species within the genus Corynebacterium, for which the name, Corynebacterium sanguinis sp. nov., is reaffirmed and proposed. Strains of Corynebacterium sanguinis are Gram-positive, non-motile, non-spore-forming, short, pleomorphic and coryneform bacilli, growing aerobically, with CO2. They contain mycolic acids, major respiratory menaquinones, MK-8 (II-H2) and MK-9 (II-H2), and polar lipids, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, glycolipids and a novel lipid that remains to be characterized and identified. Strains of Corynebacterium sanguinis are genotypically most similar to Corynebacterium lipophiliflavum, with 16S rRNA gene sequence similarities of 98.3% and rpoB sequence similarities of 94.9–95.2%. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis were able to clearly differentiate Corynebacterium sanguinis from the most closely related species. The genome size of Corynebacterium sanguinis is 2.28–2.37 Mbp with 65.1–65.5 mol% G + C content. A total of 2202–2318 ORFs were predicted, comprising 2141–2251 protein-encoding genes. The type strain is CCUG 58655T (=CCM 8873T = NCTC 14287T).  相似文献   

15.
Summary C-terminal fragments of colicin E1, ranging in mol wt from 14.5 to 20kD, form channels with voltage dependence and ion selectivity qualitatively similar to those of whole E1, placing an upper limit on the channel-forming domain. Under certain conditions, however, the gating kinetics and ion selectivity of channels formed by these different E1 peptides can be distinguished. The differences in channel behavior appear to be correlated with peptide length. Enzymatic digestion with trypsin of membrane-bound E1 peptides converts channel behavior of longer peptides to that characteristic of channels formed by shorter fragments. Apparently trypsin removes segments of protein N-terminal to the channel-forming region, since gating behavior of the shortest fragment is little affected by the enzyme. The success of this conversion depends on the side of the membrane to which trypsin is added and on the state, open or closed, of the channel. Trypsin modifies only closed channels from thecis side (the side to which protein has been added) and only open channels from thetrans side. These results suggest that regions outside the channel-forming domain affect ion selectivity and gating, and they also provide evidence that large protein segments outside the channel-forming domain are translocated across the membrane with channel gating.  相似文献   

16.
Several strains belonging to the genus Corynebacterium, but not to any described species of the genus were isolated from bovine mastitic milk samples over the past five years in the diagnostic unit of the University of Bern. Six of these strains (18M0132T, 17M2518, 18M0913, 19M0083, 20M1046 and 20M1090) that were phenotypically similar were further characterized genotypically. Gram-positive coryneform rods were catalase positive, facultative anaerobe and CAMP-test negative. Whole genome sequencing and subsequent phylogenetic analysis revealed their genome size to be 2.53 Mb and their G + C content to be between 65.4 and 65.5 mol%. Digital DNA-DNA hybridisation (dDDH) showed the highest similarity of only less than 20% with Corynebacterium mastitidis and Corynebacterium frankenforstense, which indicated that the isolates belong to an undescribed Corynebacterium species. This was confirmed by studying the average nucleotide identity (ANI) where the accepted species boundary is around 95% and which ranged between 70.3% and 74.9% with the most closely related species C. mastitidis. We established MALDI-TOF fingerprints of the species, which allows a clear separation from related species and can be used by other laboratories for diagnostic purposes.Based on our analyses we conclude that the selected strains belong to a previously undescribed species and propose the name Corynebacterium uberis sp. nov. The proposed type strain is 18M0132T (=DSM 111922T, = CCOS 1972T).  相似文献   

17.
18.
Corynebacterium diphtheriae is a Gram-positive, non-spore forming, non-motile, pleomorphic rod belonging to the genus Corynebacterium and the actinomycete group of organisms. The organism produces a potent bacteriophage-encoded protein exotoxin, diphtheria toxin (DT), which causes the symptoms of diphtheria. This potentially fatal infectious disease is controlled in many developed countries by an effective immunisation programme. However, the disease has made a dramatic return in recent years, in particular within the Eastern European region. The largest, and still on-going, outbreak since the advent of mass immunisation started within Russia and the newly independent states of the former Soviet Union in the 1990s. We have sequenced the genome of a UK clinical isolate (biotype gravis strain NCTC13129), representative of the clone responsible for this outbreak. The genome consists of a single circular chromosome of 2 488 635 bp, with no plasmids. It provides evidence that recent acquisition of pathogenicity factors goes beyond the toxin itself, and includes iron-uptake systems, adhesins and fimbrial proteins. This is in contrast to Corynebacterium’s nearest sequenced pathogenic relative, Mycobacterium tuberculosis, where there is little evidence of recent horizontal DNA acquisition. The genome itself shows an unusually extreme large-scale compositional bias, being noticeably higher in G+C near the origin than at the terminus.  相似文献   

19.
The effect of membrane dipole potential (? d ) on the properties of ion channels formed in bilayer lipid membranes by syringomycin E (SRE), a toxin produced by Pseudomonas syringae, has been studied. It has been shown that ? d affects the conductance and lifetime of elementary SRE channels as well as their cluster organization, in particular, the number of elementary channels synchronously opened in the cluster and the lifetime of these clusters. The channel-forming activity of SRE was found to be ? d -dependent. The analysis of experimental data has revealed that (i) the mechanisms of the observed effects involve the dipole-dipole and charge-dipole interactions responsible for the cooperative functioning of the elementary SRE channels; (ii) about 95% of membrane dipole potential is shielded in the SRE pore; and (iii) the channel-forming activity of SRE is mainly determined by the gating charge of the SRE channels. At the same time, the partition coefficient for the toxin distribution between the membrane and aqueous phase as well as the chemical component of the channel formation work are also responsible for the ? d -dependence of the SRE channel forming activity.  相似文献   

20.
For many years, the potential pathogenic of non-diphtheriae corynebacteria were underestimated. Nowadays, a growing number of Corynebacterium species are recognized as opportunistic agents of human infections, mainly in hospital settings. In addition, multidrug-resistant Corynebacterium isolates from clinical specimens, have been reported and the role of Corynebacterium spp. in urinary tract infections (UTIs) has been highlighted. Several studies have reported Corynebacterium species as the agent of UTIs especially in patients with risk factors. Thus, the present work aimed to report the first isolation of Corynebacterium mycetoides from human urine and an initial study on its virulence properties. The isolate, initially characterized by phenotypical tests as a multidrug-resistant Corynebacterium sp., was recovered from the urine of a female transplant patient. Mass spectrometry and 16S rRNA and rpoB genes sequencing identified the isolate as C. mycetoides. The isolate was found able to adhere to and survive into epithelial cells (Vero cells), and its pathogenic potential was confirmed when tested against Caenorhabditis elegans nematode. The results obtained suggest that C. mycetoides is a potential pathogen for the urinary tract in humans and for a better understanding of the multifactorial mechanisms of virulence, studies about this species should be continued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号