首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.

Background and Aims

The pattern of callose deposition was followed in developing stomata of the fern Asplenium nidus to investigate the role of this polysaccharide in guard cell (GC) wall differentiation and stomatal pore formation.

Methods

Callose was localized by aniline blue staining and immunolabelling using an antibody against (1 → 3)-β-d-glucan. The study was carried out in stomata of untreated material as well as of material treated with: (1) 2-deoxy-d-glucose (2-DDG) or tunicamycin, which inhibit callose synthesis; (2) coumarin or 2,6-dichlorobenzonitrile (dichlobenil), which block cellulose synthesis; (3) cyclopiazonic acid (CPA), which disturbs cytoplasmic Ca2+ homeostasis; and (d) cytochalasin B or oryzalin, which disintegrate actin filaments and microtubules, respectively.

Results

In post-cytokinetic stomata significant amounts of callose persisted in the nascent ventral wall. Callose then began degrading from the mid-region of the ventral wall towards its periphery, a process which kept pace with the formation of an ‘internal stomatal pore’ by local separation of the partner plasmalemmata. In differentiating GCs, callose was consistently localized in the developing cell-wall thickenings. In 2-DDG-, tunicamycin- and CPA-affected stomata, callose deposition and internal stomatal pore formation were inhibited. The affected ventral walls and GC wall thickenings contained membranous elements. Stomata recovering from the above treatments formed a stomatal pore by a mechanism different from that in untreated stomata. After coumarin or dichlobenil treatment, callose was retained in the nascent ventral wall for longer than in control stomata, while internal stomatal pore formation was blocked. Actin filament disintegration inhibited internal stomatal pore formation, without any effect on callose deposition.

Conclusions

In A. nidus stomata the time and pattern of callose deposition and degradation play an essential role in internal stomatal pore formation, and callose participates in deposition of the local GC wall thickenings.  相似文献   

2.

Background and Aims

Phenotypic plasticity is based on the organism''s ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants.

Methods

Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours.

Key Results

In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3–24 h after the beginning of stress induction.

Conclusions

The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.  相似文献   

3.

Background and Aims

Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance.

Methods

An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2.

Key Results and Conclusion

In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss λ (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.  相似文献   

4.

Background and Aims

Leaf and wood plasticity are key elements in the survival of widely distributed plant species. Little is known, however, about variation in stomatal distribution in the leaf epidermis and its correlation with the dimensions of conducting cells in wood. This study aimed at testing the hypothesis that Podocarpus lambertii, a conifer tree, possesses a well-defined pattern of stomatal distribution, and that this pattern can vary together with the dimensions of stem tracheids as a possible strategy to survive in climatically different sites.

Methods

Leaves and wood were sampled from trees growing in a cold, wet site in south-eastern Brazil and in a warm, dry site in north-eastern Brazil. Stomata were thoroughly mapped in leaves from each study site to determine a spatial sampling strategy. Stomatal density, stomatal index and guard cell length were then sampled in three regions of the leaf: near the midrib, near the leaf margin and in between the two. This sampling strategy was used to test for a pattern and its possible variation between study sites. Wood and stomata data were analysed together via principal component analysis.

Key Results

The following distribution pattern was found in the south-eastern leaves: the stomatal index was up to 25 % higher in the central leaf region, between the midrib and the leaf margin, than in the adjacent regions. The inverse pattern was found in the north-eastern leaves, in which the stomatal index was 10 % higher near the midrib and the leaf margin. This change in pattern was accompanied by smaller tracheid lumen diameter and length.

Conclusions

Podocarpus lambertii individuals in sites with higher temperature and lower water availability jointly regulate stomatal distribution in leaves and tracheid dimensions in wood. The observed stomatal distribution pattern and variation appear to be closely related to the placement of conducting tissue in the mesophyll.  相似文献   

5.

Background and Aims

Extreme water stress episodes induce tree mortality, but the physiological mechanisms causing tree death are still poorly understood. This study tests the hypothesis that a potted tree''s ability to survive extreme monotonic water stress is determined by the cavitation resistance of its xylem tissue.

Methods

Two species were selected with contrasting cavitation resistance (beech and poplar), and potted juvenile trees were exposed to a range of water stresses, causing up to 100 % plant death.

Key Results

The lethal dose of water stress, defined as the xylem pressure inducing 50 % mortality, differed sharply across species (1·75 and 4·5 MPa in poplar and beech, respectively). However, the relationships between tree mortality and the degree of cavitation in the stems were similar, with mortality occurring suddenly when >90 % cavitation had occurred.

Conclusions

Overall, the results suggest that cavitation resistance is a causal factor of tree mortality under extreme drought conditions.  相似文献   

6.

Background and Aims

Stomata formed at high relative air humidity (RH) respond less to abscisic acid (ABA), an effect that varies widely between cultivars. This study tested the hypotheses that this genotypic variation in stomatal responsiveness originates from differential impairment in intermediates of the ABA signalling pathway during closure and differences in leaf ABA concentration during growth.

Methods

Stomatal anatomical features and stomatal responsiveness to desiccation, feeding with ABA, three transduction elements of its signalling pathway (H2O2, NO, Ca2+) and elicitors of these elements were determined in four rose cultivars grown at moderate (60 %) and high (90 %) RH. Leaf ABA concentration was assessed throughout the photoperiod and following mild desiccation (10 % leaf weight loss).

Key Results

Stomatal responsiveness to desiccation and ABA feeding was little affected by high RH in two cultivars, whereas it was considerably attenuated in two other cultivars (thus termed sensitive). Leaf ABA concentration was lower in plants grown at high RH, an effect that was more pronounced in the sensitive cultivars. Mild desiccation triggered an increase in leaf ABA concentration and equalized differences between leaves grown at moderate and high RH. High RH impaired stomatal responses to all transduction elements, but cultivar differences were not observed.

Conclusions

High RH resulted in decreased leaf ABA concentration during growth as a result of lack of water deficit, since desiccation induced ABA accumulation. Sensitive cultivars underwent a larger decrease in leaf ABA concentration rather than having a higher ABA concentration threshold for inducing stomatal functioning. However, cultivar differences in stomatal closure following ABA feeding were not apparent in response to H2O2 and downstream elements, indicating that signalling events prior to H2O2 generation are involved in the observed genotypic variation.  相似文献   

7.

Background and Aims

Angiosperm stomata consistently possess a pair of guard cells, but differ between taxa in the patterning and developmental origin of neighbour cells. Developmental studies of phylogenetically pivotal taxa are essential as comparative yardsticks for understanding the evolution of stomatal development.

Methods

We present a novel ultrastructural study of developing stomata in leaves of Amborella (Amborellales), Nymphaea and Cabomba (Nymphaeales), and Austrobaileya and Schisandra (Austrobaileyales), representing the three earliest-divergent lineages of extant angiosperms (the ANITA-grade).

Key Results

Alternative developmental pathways occur in early-divergent angiosperms, resulting partly from differences in pre-patterning and partly from the presence or absence of highly polarized (asymmetric) mitoses in the stomatal cell lineage. Amplifying divisions are absent from ANITA-grade taxa, indicating that ostensible similarities with the stomatal patterning of Arabidopsis are superficial. In Amborella, ‘squared’ pre-patterning occurs in intercostal regions, with groups of four protodermal cells typically arranged in a rectangle; most guard-mother cells are formed by asymmetric division of a precursor cell (the mesoperigenous condition) and are typically triangular or trapezoidal. In contrast, water-lily stomata are always perigenous (lacking asymmetric divisions). Austrobaileya has occasional ‘giant’ stomata.

Conclusions

Similar mature stomatal phenotypes can result from contrasting morphogenetic factors, although the results suggest that paracytic stomata are invariably the product of at least one asymmetric division. Loss of asymmetric divisions in stomatal development could be a significant factor in land plant evolution, with implications for the diversity of key structural and physiological pathways.  相似文献   

8.

Background and Aims

Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis.

Methods

Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed.

Key Results and Conclusions

Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and satellite lineage initiation combine in several ways. This first systematic, comprehensive natural variation survey for stomatal abundance in A. thaliana reveals cryptic developmental genetic variation, and provides relevant relationships amongst stomatal traits and extreme or uncommon accessions as resources for the genetic dissection of stomatal development.  相似文献   

9.
Both ozone (O3) and drought can limit carbon fixation by forest trees. To cope with drought stress, plants have isohydric or anisohydric water use strategies. Ozone enters plant tissues through stomata. Therefore, stomatal closure can be interpreted as avoidance to O3 stress. Here, we applied an optimization model of stomata involving water, CO2, and O3 flux to test whether isohydric and anisohydric strategies may affect avoidance of O3 stress by stomatal closure in four Mediterranean tree species during drought. The data suggest that stomatal closure represents a response to avoid damage to the photosynthetic mechanisms under elevated O3 depending on plant water use strategy. Under high-O3 and well-watered conditions, isohydric species limited O3 fluxes by stomatal closure, whereas anisohydric species activated a tolerance response and did not actively close stomata. Under both O3 and drought stress, however, anisohydric species enhanced the capacity of avoidance by closing stomata to cope with the severe oxidative stress. In the late growing season, regardless of the water use strategy, the efficiency of O3 stress avoidance decreased with leaf ageing. As a result, carbon assimilation rate was decreased by O3 while stomata did not close enough to limit transpirational water losses.  相似文献   

10.

Background and Aims

The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays an important role in closure. Because electrical signals are involved in reduction of the photosynthetic rate in different plant species, we hypothesized that trap closure and subsequent movement of prey in the trap will result in transient downregulation of photosynthesis, thus representing the energetic costs of carnivory associated with an active trapping mechanism, which has not been previously described.

Methods

Traps were enclosed in a gas exchange cuvette and the trigger hairs irritated with thin wire, thus simulating insect capture and retention. Respiration rate was measured in darkness (RD). In the light, net photosynthetic rate (AN), stomatal conductance (gs) and intercellular CO2 concentration (ci) were measured, combined with chlorophyll fluorescence imaging. Responses were monitored in the lamina and trap separately.

Key Results

Irritation of trigger hairs resulted in decreased AN and increased RD, not only immediately after trap closure but also during the subsequent period when prey retention was simulated in the closed trap. Stomatal conductance remained stable, indicating no stomatal limitation of AN, so ci increased. At the same time, the effective quantum yield of photosystem II (ΦPSII) decreased transiently. The response was confined mainly to the digestive zone of the trap and was not observed in the lamina. Stopping mechanical irritation resulted in recovery of AN, RD and ΦPSII.

Conclusions

We put forward the first experimental evidence for energetic demands and carbon costs during insect trapping and retention in carnivorous plants, providing a new insight into the cost/benefit model of carnivory.  相似文献   

11.

Background and Aims

The inverse relationship between stomatal density (SD: number of stomata per mm2 leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI–[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2].

Methods

Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2).

Key Results

T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI–[CO2] relationship is not apparent across the genus Callitris.

Conclusions

The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species.  相似文献   

12.
13.

Background and Aims

Calotropis procera and Calotropis gigantea, originally from warm parts of Africa and Asia, are now pan-tropical and in ecological terms considered an indicator of overgrazed, disturbed lands; they grow successfully in dry areas. Variations in water relations, morphology and photosynthesis of the two species growing in the same habitat were studied to assess possible mechanisms of tolerance to drought and how these relate to their ecophysiological success. Also the hypothesis that their photosynthetic rate (A) under drought would be affected by stomatal and non-stomatal limitations was tested.

Methods

Water relations, gas exchange, water use efficiency (WUE), fluorescence parameters, pubescence and specific leaf area (SLA) of Calotropis procera and C. gigantea plants growing in the field were evaluated during the wet (WS) and dry (DS) seasons.

Results

The xylem water potential (ψ) was similar in both species during the WS and DS; drought caused a 28 % decrease of ψ. In C. procera, A, stomatal conductance (gs) and carboxylation efficiency (CE) were higher in the WS with half the values of those during the DS, this species being more affected by drought than C. gigantea. A high δ13C of C. gigantea (–26·2 ‰) in the WS indicated a higher integrated WUE, in agreement with its lower gs. Leaves of C. gigantea were more pubescent than C. procera. Relative stomatal and non-stomatal limitation of A increased with drought in both species; no changes in maximum quantum yield of photosystem II (PSII; Fv/Fm) were observed. The decrease in the relative quantum yield of PSII (φPSII) and in the photochemical quenching coefficient (qP) was more pronounced in C. procera than in C. gigantea.

Conclusions

The photosynthetic capacity of C. procera was higher than that of C. gigantea. During the DS, A was regulated by stomatal and non-stomatal factors in a coordinated manner and drought did not cause chronic photoinhibition. A higher density of trichomes and leaf angle in C. gigantea may contribute to the maintenance of A and confer more efficient protection of photochemical activity in the DS. Ecophysiological traits such as high photosynthetic rate throughout the year even during the DS, and high WUE, highly pubescent leaves and low SLA observed in both species contribute to the establishment and growth of Calotropis in dry conditions.  相似文献   

14.

Background and Aims

In seed plants, the ability of guard cell walls to move is imparted by pectins. Arabinan rhamnogalacturonan I (RG1) pectins confer flexibility while unesterified homogalacturonan (HG) pectins impart rigidity. Recognized as the first extant plants with stomata, mosses are key to understanding guard cell function and evolution. Moss stomata open and close for only a short period during capsule expansion. This study examines the ultrastructure and pectin composition of guard cell walls during development in Funaria hygrometrica and relates these features to the limited movement of stomata.

Methods

Developing stomata were examined and immunogold-labelled in transmission electron microscopy using monoclonal antibodies to five pectin epitopes: LM19 (unesterified HG), LM20 (esterified HG), LM5 (galactan RG1), LM6 (arabinan RG1) and LM13 (linear arabinan RG1). Labels for pectin type were quantitated and compared across walls and stages on replicated, independent samples.

Key Results

Walls were four times thinner before pore formation than in mature stomata. When stomata opened and closed, guard cell walls were thin and pectinaceous before the striated internal and thickest layer was deposited. Unesterified HG localized strongly in early layers but weakly in the thick internal layer. Labelling was weak for esterified HG, absent for galactan RG1 and strong for arabinan RG1. Linear arabinan RG1 is the only pectin that exclusively labelled guard cell walls. Pectin content decreased but the proportion of HG to arabinans changed only slightly.

Conclusions

This is the first study to demonstrate changes in pectin composition during stomatal development in any plant. Movement of Funaria stomata coincides with capsule expansion before layering of guard cell walls is complete. Changes in wall architecture coupled with a decrease in total pectin may be responsible for the inability of mature stomata to move. Specialization of guard cells in mosses involves the addition of linear arabinans.  相似文献   

15.
16.

Background and Aims

Genome size is known to affect various plant traits such as stomatal size, seed mass, and flower or shoot phenology. However, these associations are not well understood for species with very large genomes, which are laregly represented by geophytic plants. No detailed associations are known between DNA base composition and genome size or species ecology.

Methods

Genome sizes and GC contents were measured in 219 geophytes together with tentative morpho-anatomical and ecological traits.

Key Results

Increased genome size was associated with earliness of flowering and tendency to grow in humid conditions, and there was a positive correlation between an increase in stomatal size in species with extremely large genomes. Seed mass of geophytes was closely related to their ecology, but not to genomic parameters. Genomic DNA GC content showed a unimodal relationship with genome size but no relationship with species ecology.

Conclusions

Evolution of genome size in geophytes is closely related to their ecology and phenology and is also associated with remarkable changes in DNA base composition. Although geophytism together with producing larger cells appears to be an advantageous strategy for fast development of an organism in seasonal habitats, the drought sensitivity of large stomata may restrict the occurrence of geophytes with very large genomes to regions not subject to water stress.  相似文献   

17.

Background and Aims

Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown.

Methods

Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring.

Key Results

Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature.

Conclusions

In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.  相似文献   

18.

Background and Aims

A major challenge in plant ecophysiology is understanding the effects of multiple sub-optimal environmental conditions on plant performance. In most Mediterranean areas soil salinity builds up during the summer because of low availability of soil water coupled with hot temperatures. Although sunlight and soil salinity may strongly interact in determining a plant''s performance, this has received relatively little attention.

Methods

Two-year-old seedlings of Fraxinus ornus were grown outdoors in pots during a Mediterranean summer in either 45 % (shaded plants) or 100 % (sun plants) sunlight irradiance and were supplied with either deionized water or deionized water plus 75 mm NaCl. Morpho-anatomical traits, water and ionic relations, gas exchange and photosystem II performance, concentrations of individual carotenoids, activity of antioxidant enzymes, concentrations of ascorbic acid and individual polyphenols were measured in leaves. Leaf oxidative stress and damage were estimated by in vivo analysis of stable free radicals and ultrastructural analyses.

Key Results

Leaf concentrations of potentially toxic ions did not markedly differ in shaded or sun plants in response to salinity. Leaves of sun plants displayed superior water use efficiency compared with leaves of shaded plants, irrespective of salinity treatment, and had both better stomatal control and higher CO2 carboxylation efficiency than leaves of shaded plants. In the salt-treated groups, the adverse effects of excess midday irradiance were greater in shade than in sun plants. The activity of enzymes responsible for detoxifying hydrogen peroxide decreased in shaded plants and increased in sun plants as a result of salinity stress. In contrast, the activity of guaiacol peroxidase and the concentration of phenylpropanoids increased steeply in response to salinity in shaded plants but were unaffected in sun plants.

Conclusions

It is concluded that salinity may constrain the performance of plants growing under partial shading more severely than that of plants growing under full sun during summer. The results suggest co-ordination within the antioxidant defence network aimed at detoxifying salt-induced generation of reactive oxygen species.  相似文献   

19.

Background and Aims

The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.

Methods

Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.

Key Results

Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.

Conclusions

Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.  相似文献   

20.
Kato Y  Okami M 《Annals of botany》2011,108(3):575-583

Background and Aims

Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture.

Methods

Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions.

Key Results

Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa.

Conclusions

Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号