首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σF in the forespore, and σE in the mother cell control early stages of development and are replaced, at later stages, by σG and σK, respectively. Starting with σF, the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σE is partially independent of σF, that σG activity is not dependent on σE, and that the activity of σK does not require σG. We also show that σK is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σF-to-σE, σE-to-σG, and σG-to-σK cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.  相似文献   

2.
Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σFG and σEK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Spore formation in Bacillus subtilis is characterized by activation of RNA polymerase sigma factors, including the late-expressed σG. During spore formation an asymmetric division occurs, yielding the smaller prespore and the larger mother cell. At division, only 30% of the chromosome is in the prespore, and the rest is then translocated into the prespore. Following completion of engulfment of the prespore by the mother cell, σG is activated in the prespore. Here we tested the link between engulfment and σG activation by perturbing DNA translocation and replication, which are completed before engulfment. One approach was to have large DNA insertions in the chromosome; the second was to have an impaired DNA translocase; the third was to use a strain in which the site of termination of chromosome replication was relocated. Insertion of 2.3 Mb of Synechocystis DNA into the B. subtilis genome had the largest effect, delaying engulfment by at least 90 min. Chromosome translocation was also delayed and was completed shortly before the completion of engulfment. Despite the delay, σG became active only after the completion of engulfment. All results are consistent with a strong link between completion of engulfment and σG activation. They support a link between completion of chromosome translocation and completion of engulfment.  相似文献   

17.
During sporulation, σG becomes active in the prespore upon the completion of engulfment. We show that the inactivation of the σF-directed csfB locus resulted in premature activation of σG. CsfB exerted control distinct from but overlapping with that exerted by LonA to prevent inappropriate σG activation. The artificial induction of csfB severely compromised spore formation.  相似文献   

18.

Background

Novel therapeutics are urgently needed to control tuberculosis (TB). Thioridazine (THZ) is a candidate for the therapy of multidrug and extensively drug-resistant TB.

Methodology/Principal Findings

We studied the impact of THZ on Mycobacterium tuberculosis (Mtb) by analyzing gene expression profiles after treatment at the minimal inhibitory (1x MIC) or highly inhibitory (4x MIC) concentrations between 1–6 hours. THZ modulated the expression of genes encoding membrane proteins, efflux pumps, oxido-reductases and enzymes involved in fatty acid metabolism and aerobic respiration. The Rv3160c-Rv3161c operon, a multi-drug transporter and the Rv3614c/3615c/3616c regulon, were highly induced in response to THZ. A significantly high number of Mtb genes co-expressed with σB (the σB regulon) was turned on by THZ treatment. σB has recently been shown to protect Mtb from envelope-damage. We hypothesized that THZ damages the Mtb cell-envelope, turning on the expression of the σB regulon. Consistent with this hypothesis, we present electron-microscopy data which shows that THZ modulates cell-envelope integrity. Moreover, the Mtb mutants in σH and σE, two alternate stress response sigma factors that induce the expression of σB, exhibited higher sensitivity to THZ, indicating that the presence and expression of σB allows Mtb to resist the impact of THZ. Conditional induction of σB levels increased the survival of Mtb in the presence of THZ.

Conclusions/Significance

THZ targets different pathways and can thus be used as a multi-target inhibitor itself as well as provide strategies for multi-target drug development for combination chemotherapy. Our results show that the Mtb sigma factor network comprising of σH, σE and σB plays a crucial role in protecting the pathogen against cell-envelope damage.  相似文献   

19.
The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号