首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Sialylated glycans serve as cell surface attachment factors for a broad range of pathogens. We report an atypical example, where desialylation increases cell surface binding and infectivity of adeno-associated virus (AAV) serotype 9, a human parvovirus isolate. Enzymatic removal of sialic acid, but not heparan sulfate or chondroitin sulfate, increased AAV9 transduction regardless of cell type. Viral binding and transduction assays on mutant Chinese hamster ovary (CHO) cell lines defective in various stages of glycan chain synthesis revealed a potential role for core glycan residues under sialic acid in AAV9 transduction. Treatment with chemical inhibitors of glycosylation and competitive inhibition studies with different lectins suggest that N-linked glycans with terminal galactosyl residues facilitate cell surface binding and transduction by AAV9. In corollary, resialylation of galactosylated glycans on the sialic acid-deficient CHO Lec2 cell line with different sialyltransferases partially blocked AAV9 transduction. Quantitative analysis of AAV9 binding to parental, sialidase-treated or sialic acid-deficient mutant CHO cells revealed a 3-15-fold increase in relative binding potential of AAV9 particles upon desialylation. Finally, pretreatment of well differentiated human airway epithelial cultures and intranasal instillation of recombinant sialidase in murine airways enhanced transduction efficiency of AAV9 by >1 order of magnitude. Taken together, the studies described herein provide a molecular basis for low infectivity of AAV9 in vitro and a biochemical strategy to enhance gene transfer by AAV9 vectors in general.  相似文献   

2.
All currently identified primary receptors of adeno-associated virus (AAV) are glycans. Depending on the AAV serotype, these carbohydrates range from heparan sulfate proteoglycans (HSPG), through glycans with terminal α2-3 or α2-6 sialic acids, to terminal galactose moieties. Receptor identification has largely relied on binding to natural compounds, defined glycan-presenting cell lines, or enzyme-mediated glycan modifications. Here, we describe a comparative binding analysis of highly purified, fluorescent-dye-labeled AAV vectors of various serotypes on arrays displaying over 600 different glycans and on a specialized array with natural and synthetic heparins. Few glycans bind AAV specifically in a serotype-dependent manner. Differential glycan binding was detected for the described sialic acid-binding AAV serotypes 1, 6, 5, and 4. The natural heparin binding serotypes AAV2, -3, -6, and -13 displayed differential binding to selected synthetic heparins. AAV7, -8, -rh.10, and -12 did not bind to any of the glycans present on the arrays. For discrimination of AAV serotypes 1 to 6 and 13, minimal binding moieties are identified. This is the first study to differentiate the natural mixed heparin binding AAV serotypes 2, 3, 6, and 13 by differential binding to specific synthetic heparins. Also, sialic acid binding AAVs display differential glycan binding specificities. The findings are relevant for further dissection of AAV host cell interaction. Moreover, the definition of single AAV-discriminating glycan binders opens the possibility for glycan microarray-based discrimination of AAV serotypes in gene therapy.  相似文献   

3.
Glycans are key determinants of host range and transmissibility in several pathogens. In the case of adeno-associated viruses (AAV), different carbohydrates serve as cellular receptors in vitro; however, their contributions in vivo are less clear. A particularly interesting example is adeno-associated virus serotype 9 (AAV9), which displays systemic tropism in mice despite low endogenous levels of its primary receptor (galactose) in murine tissues. To understand this further, we studied the effect of modulating glycan binding avidity on the systemic fate of AAV9 in mice. Intravenous administration of recombinant sialidase increased tissue levels of terminally galactosylated glycans in several murine tissues. These conditions altered the systemic tropism of AAV9 into a hepatotropic phenotype, characterized by markedly increased sequestration within the liver sinusoidal endothelium and Kupffer cells. In contrast, an AAV9 mutant with decreased glycan binding avidity displayed a liver-detargeted phenotype. Altering glycan binding avidity also profoundly affected AAV9 persistence in blood circulation. Our results support the notion that high glycan receptor binding avidity appears to impart increased liver tropism, while decreased avidity favors systemic spread of AAV vectors. These findings may not only help predict species-specific differences in tropism for AAV9 on the basis of tissue glycosylation profiles, but also provide a general approach to tailor AAV vectors for systemic or hepatic gene transfer by reengineering capsid-glycan interactions.  相似文献   

4.
Some of the most successful gene therapy results have been obtained using recombinant viral vectors to treat animal models of inherited and acquired ocular diseases. Clinical trials using adenovirus vector systems have been initiated for two ocular diseases. Adeno-associated viruses (AAVs) represent an attractive alternative to adenoviral vector systems as they enable stable and long-term expression and can target a variety of different ocular cell types depending on the capsid serotype; recently clinical trails for congenital blindness was initiated with a vector-based AAV serotype 2. High levels of retinal gene transfer have been achieved using vectors based on AAV serotypes 1, 2, 4 and 5. This report compares the gene transfer efficacy and stability of expression of vector systems based on three novel AAV serotypes: AAV7, 8, 9, with the established vectors AAV1, 2, 5. We show here that AAV7 and 8 enable superior long-term transduction of retinal and also anterior chamber structures.  相似文献   

5.
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.  相似文献   

6.
A rapid method of ultracentrifugation pelleting of avian adenovirus (AAV) from small volume of chloroform treated infected cell culture fluid or allantoic fluid was adapted for isolation of adenoviral DNA. The viral DNA extracted from semipurified viruses was found to be intact on agarose gel and pure enough (A260/280 = 1.85-1.92) for restriction enzyme analysis. Restriction endonuclease analysis of Indian strain of AAV serotype 1, AAV serotype 4 (group I AAVs) and egg drop syndrome-76 (EDS-76) virus genomes (group III AAV) with Hind III enzyme differentiated these viruses. The AAV serotype 1 and serotype 4 strain exhibited identical Hind III profile to European viral strains belonging to same serotypes however, the EDS-76 virus gave similar but not identical profile. The calculated genomic lengths for AAV serotype 1 and EDS-76 virus were approximately found to be 33.9 and 44.4 Kb, respectively.  相似文献   

7.
Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system.  相似文献   

8.
Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent.  相似文献   

9.
Human rotavirus K8 strain represents a new VP4 serotype.   总被引:1,自引:0,他引:1       下载免费PDF全文
The complete VP4 gene of the human rotavirus (HRV) K8 strain (G1 serotype) was cloned and inserted into the baculovirus transfer vector pVL941 under the control of the polyhedrin promoter. A K8VP4 recombinant baculovirus was obtained by cotransfection of Spodoptera frugiperda (Sf9) cells with transfer vector DNA containing the K8VP4 gene and wild-type baculovirus DNA. Infection of Sf9 cells with this VP4 recombinant baculovirus resulted in the production of a protein that is similar in size and antigenic activity to the authentic VP4 of the K8 strain. Guinea pigs immunized with the expressed VP4 developed antibodies that neutralized the infectivity of the K8 strain. This antiserum neutralized HRV strains belonging to VP4 serotypes 1A, 1B, and 2 with efficiency eightfold or lower than that of the homologous virus, indicating that the human rotavirus K8 strain represents a distinct VP4 serotype (P3). In addition, low levels of cross-immunoprecipitation of the K8VP4 and its VP5 and VP8 subunits with hyperimmune antisera to HRV strains representing different VP4 serotype specificities also suggested that the K8 strain possesses a unique VP4 with few epitopes in common with other P-serotype strains.  相似文献   

10.
The human parvovirus adeno-associated virus (AAV) infects a broad range of cell types, including human, nonhuman primate, canine, murine, and avian. Although little is known about the initial events of virus infection, AAV is currently being developed as a vector for human gene therapy. Using defined mutant CHO cell lines and standard biochemical assays, we demonstrate that heparan sulfate proteoglycans mediate both AAV attachment to and infection of target cells. Competition experiments using heparin, a soluble receptor analog, demonstrated dose-dependent inhibition of AAV attachment and infection. Enzymatic removal of heparan but not chondroitin sulfate moieties from the cell surface greatly reduced AAV attachment and infectivity. Finally, mutant cell lines that do not produce heparan sulfate proteoglycans were significantly impaired for both AAV binding and infection. This is the first report that proteoglycan has a role in cellular attachment of a parvovirus. Together, these results demonstrate that membrane-associated heparan sulfate proteoglycan serves as the viral receptor for AAV type 2, and provide an explanation for the broad host range of AAV. Identification of heparan sulfate proteoglycan as a viral receptor should facilitate development of new reagents for virus purification and provide critical information on the use of AAV as a gene therapy vector.  相似文献   

11.
A new adeno-associated virus (AAV), referred to as AAV(VR-942), has been isolated as a contaminant of adenovirus strain simian virus 17. The sequence of the rep gene places it in the AAV serotype 2 (AAV2) complementation group, while the capsid is only 88% identical to that of AAV2. High-level AAV(VR-942) transduction activity requires cell surface heparan sulfate proteoglycans, although AAV(VR-942) lacks residues equivalent to the AAV2 R585 and R588 amino acid residues essential for mediating the interaction of AAV2 with the heparan sulfate proteoglycan receptor. Instead, AAV(VR-942) uses a distinct transduction region. This finding shows that distinct domains on different AAV isolates can be responsible for the same activities.  相似文献   

12.
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-A resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded beta-barrel and long loops between the beta-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.  相似文献   

13.
Adhesion/growth-regulatory galectins (gals) exert their functionality by the cis/trans-cross-linking of distinct glycans after initial one-point binding. In order to define the specificity of ensuing association events leading to cross-linking, we recently established a cell-based assay using fluorescent glycoconjugates as flow cytometry probes and tested it on two human gals (gal-1 and -3). Here we present a systematic study of tandem-repeat-type gal-4, -8 and -9 loaded on Raji cells resulting in the following key insights: (i) all three gals bound to oligolactosamines; (ii) binding to ligands with Galβ1-3GlcNAc or Galβ1-3GalNAc as basic motifs was commonly better than that to canonical Galβ1-4GlcNAc; (iii) all three gals bound to 3'-O-sulfated and 3'-sialylated disaccharides mentioned above better than that to parental neutral forms and (iv) histo-blood group ABH antigens were the highest affinity ligands in both the cell and the solid-phase assay. Fine specificity differences were revealed as follows: (i) gal-8 and -9, but not gal-4, bound to disaccharide Galβ1-3GlcNAc; (ii) increase in binding due to negatively charged substituents was marked only in the case of gal-4 and (iii) gal-4 and -8 bound preferably to histo-blood group A glycans, whereas gal-9 targeted B-type glycans. Experiments with single carbohydrate recognition domains (CRDs) of gal-4 showed that the C-CRD preferably bound to ABH glycans, whereas the N-CRD associated with oligolactosamines. In summary, the comparative analysis disclosed the characteristic profiles of glycan reactivity for the accessible CRD of cell-bound gals. These results indicate the distinct sets of functionality for these three members of the same subgroup of human gals.  相似文献   

14.
Recombinant adeno-associated viruses (AAVs) are promising vectors in the field of gene therapy. Different AAV serotypes display distinct tissue tropism, believed to be related to the distribution of their receptors on target cells. Of the 11 well-characterized AAV serotypes, heparan sulfate proteoglycan and sialic acid have been suggested to be the attachment receptors for AAV type 2 and types 4 and 5, respectively. In this report, we identify the receptor for the two closely related serotypes, AAV1 and AAV6. First, we demonstrate using coinfection experiments and luciferase reporter analysis that AAV1 and AAV6 compete for similar receptors. Unlike heparin sulfate, enzymatic or genetic removal of sialic acid markedly reduced AAV1 and AAV6 binding and transduction. Further analysis using lectin staining and lectin competition assays identified that AAV1 and AAV6 use either alpha2,3-linked or alpha2,6-linked sialic acid when transducing numerous cell types (HepG2, Pro-5, and Cos-7). Treatment of cells with proteinase K but not glycolipid inhibitor reduced AAV1 and AAV6 infection, supporting the hypothesis that the sialic acid that facilitates infection is associated with glycoproteins rather than glycolipids. In addition, we determined by inhibitor (N-benzyl GalNAc)- and cell line-specific (Lec-1) studies that AAV1 and AAV6 require N-linked and not O-linked sialic acid. Furthermore, a resialylation experiment on a deficient Lec-2 cell line confirmed a 2,3 and 2,6 N-linked sialic acid requirement, while studies of mucin with O-linked sialic acid showed no inhibition effect for AAV1 and AAV6 transduction on Cos-7 cells. Finally, using a glycan array binding assay we determined that AAV1 efficiently binds to NeuAcalpha2-3GalNAcbeta1-4GlcNAc, as well as two glycoproteins with alpha2,3 and alpha2,6 N-linked sialic acids. Taken together, competition, genetic, inhibitor, enzymatic reconstitution, and glycan array experiments support alpha2,3 and alpha2,6 sialic acids that are present on N-linked glycoproteins as primary receptors for efficient AAV1 and AAV6 viral infection.  相似文献   

15.
We have shown that recombinant forms of VP8* domains of the human rotavirus outer capsid spike protein VP4 from human neonatal strains (N155(G10P[11]) and RV3(G3P[6]) and a bovine strain (B223) recognize unique glycans within the repertoire of human milk glycans. The accompanying study by Yu et al.2, describes a human milk glycan shotgun glycan microarray that led to the identification of 32 specific glycans in the human milk tagged glycan library that were recognized by these human rotaviruses. These microarray analyses also provided a variety of metadata about the recognized glycan structures compiled from anti-glycan antibody and lectin binding before and after specific glycosidase digestions, along with compositional information from mass analysis by matrix-assisted laser desorption ionization-mass spectrometry. To deduce glycan sequence and utilize information predicted by analyses of metadata from each glycan, 28 of the glycan targets were retrieved from the tagged glycan library for detailed sequencing using sequential disassembly of glycans by ion-trap mass spectrometry. Our aim is to obtain a deeper structural understanding of these key glycans using an orthogonal approach for structural confirmation in a single ion trap mass spectrometer. This sequential ion disassembly strategy details the complexities of linkage and branching in multiple compositions, several of which contained isomeric mixtures including several novel structures. The application of this approach exploits both library matching with standard materials and de novo approaches. This combination together with the metadata generated from lectin and antibody-binding data before and after glycosidase digestions provide a heretofore-unavailable level of analytical detail to glycan structure analysis. The results of these studies showed that, among the 28 glycan targets analyzed, 27 unique structures were identified, and 23 of the human milk glycans recognized by human rotaviruses represent novel structures not previously described as glycans in human milk. The functional glycomics analysis of human milk glycans provides significant insight into the repertoire of glycans comprising the human milk metaglycome.  相似文献   

16.
The serotypes of adeno-associated virus (AAV) have the potential to become important resources for clinical gene therapy. In an effort to compare the role of serotype-specific virion shells on vector transduction, we cloned each of the serotype capsid coding domains into a common vector backbone containing AAV type 2 replication genes. This strategy allowed the packaging of AAV2 inverted terminal repeat vectors into each serotype-specific virions. Each of these helper plasmids (pXR1 through pXR5) efficiently replicated the transgene DNA and expressed helper proteins at nearly equivalent levels. In this study, we observed a correlation between the amount of transgene replication and packaging efficiency. The physical titer of these hybrid vectors ranged between 1.3 x 10(11) and 9.8 x 10(12)/ml (types 1 and 2, respectively). Of the five serotype vectors, only types 2 and 3 were efficiently purified by heparin-Sepharose column chromatography, illustrating the high degree of similarity between these virions. We analyzed vector transduction in reference and mutant Chinese hamster ovary cells deficient in heparan sulfate proteoglycan and saw a correlation between transduction and heparan sulfate binding data. In this analysis, types 1 and 5 were most consistent in transduction efficiency across all cell lines tested. In vivo each serotype was ranked after comparison of transgene levels by using different routes of injection and strains of rodents. Overall, in this analysis, type 1 was superior for efficient transduction of liver and muscle, followed in order by types 5, 3, 2, and 4. Surprisingly, this order changed when vector was introduced into rat retina. Types 5 and 4 were most efficient, followed by type 1. These data established a hierarchy for efficient serotype-specific vector transduction depending on the target tissue. These data also strongly support the need for extending these analyses to additional animal models and human tissue. The development of these helper plasmids should facilitate direct comparisons of serotypes, as well as begin the standardization of production for further clinical development.  相似文献   

17.
以纯化的重组AAV2病毒颗粒为抗原免疫小鼠,获得7株稳定分泌抗AAV2衣壳蛋白的单克隆抗体杂交瘤细胞株,其中B10和G4两株单克隆抗体具有中和活性,抗体亚型分别为IgG1和IgG2a型。对这两株单克隆抗体与rAAV病毒结合的特性进行了研究。单克隆抗体B10和G4对rAAV2病毒颗粒的结合均具有良好的血清型特异性,并且这种特异结合作用不被肝素阻断。这两株抗体都不阻断AAV2病毒与敏感细胞的结合,提示它们与病毒颗粒的结合位点都不处于AAV2病毒与主要受体结合的部位内。Western blotting检测结果显示,B10与AAV2的三种衣壳蛋白VP1、VP2和VP3均能结合,而G4不能与AAV2的这三种衣壳蛋白结合。这说明B10与AAV2结合的位点位于衣壳蛋白VP1、VP2和VP3的重叠部分处并且可能是线性表位,而G4则可能是针对AAV2病毒颗粒构象表位的抗体。这两种结合特性不同的单克隆抗体为研究AAV2病毒颗粒的表面特性和感染特性提供有用的工具。  相似文献   

18.
The glycan shield of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein serves as a barrier to antibody-mediated neutralization and plays a critical role in transmission and infection. One of the few broadly neutralizing HIV-1 antibodies, 2G12, binds to a carbohydrate epitope consisting of an array of high-mannose glycans exposed on the surface of the gp120 subunit of the Env protein. To produce proteins with exclusively high-mannose carbohydrates, we generated a mutant strain of Saccharomyces cerevisiae by deleting three genes in the N-glycosylation pathway, Och1, Mnn1, and Mnn4. Glycan profiling revealed that N-glycans produced by this mutant were almost exclusively Man(8)GlcNAc(2), and four endogenous glycoproteins that were efficiently recognized by the 2G12 antibody were identified. These yeast proteins, like HIV-1 gp120, contain a large number and high density of N-linked glycans, with glycosidase digestion abrogating 2G12 cross-reactivity. Immunization of rabbits with whole Delta och1 Delta mnn1 Delta mnn4 yeast cells produced sera that recognized a broad range of HIV-1 and simian immunodeficiency virus (SIV) Env glycoproteins, despite no HIV/SIV-related proteins being used in the immunization procedure. Analyses of one of these sera on a glycan array showed strong binding to glycans with terminal Man alpha1,2Man residues, and binding to gp120 was abrogated by glycosidase removal of high-mannose glycans and terminal Man alpha1,2Man residues, similar to 2G12. Since S. cerevisiae is genetically pliable and can be grown easily and inexpensively, it will be possible to produce new immunogens that recapitulate the 2G12 epitope and may make the glycan shield of HIV Env a practical target for vaccine development.  相似文献   

19.
Preclinical studies in mice and non-human primates showed that AAV serotype 5 provides efficient liver transduction and as such seems a promising vector for liver directed gene therapy. An advantage of AAV5 compared to serotype 8 already shown to provide efficient correction in a phase 1 trial in patients suffering from hemophilia B, is its lower seroprevalence in the general population. Our goal is liver directed gene therapy for Crigler-Najjar syndrome type I, inherited severe unconjugated hyperbilirubinemia caused by UGT1A1 deficiency. In a relevant animal model, the Gunn rat, we compared the efficacy of AAV 5 and 8 to that of AAV1 previously shown to be effective. Ferrying a construct driving hepatocyte specific expression of UGT1A1, both AAV8 and AAV1 provided an efficient correction of hyperbilirubinemia. In contrast to these two and to other animal models AAV5 failed to provide any correction. To clarify whether this unexpected finding was due to the rat model used or due to a problem with AAV5, the efficacy of this serotype was compared in a mouse and two additional rat strains. Administration of an AAV5 vector expressing luciferase under the control of a liver specific promoter confirmed that this serotype poorly performed in rat liver, rendering it not suitable for proof of concept studies in this species.  相似文献   

20.
The ability of adeno-associated virus serotype 1 to 8 (AAV1 to AAV8) vectors expressing the human immunodeficiency virus type 1 (HIV-1) Env gp160 (AAV-HIV) to induce an immune response was evaluated in BALB/c mice. The AAV5 vector showed a higher tropism for both mouse and human dendritic cells (DCs) than did the AAV2 vector, whereas other AAV serotype vectors transduced DCs only poorly. AAV1, AAV5, AAV7, and AAV8 were more highly expressed in muscle cells than AAV2. An immunogenicity study of AAV serotypes indicates that AAV1, AAV5, AAV7, and AAV8 vectors expressing the Env gp160 gene induced higher HIV-specific humoral and cell-mediated immune responses than the AAV2 vector did, with the AAV5 vector producing the best responses. Furthermore, mice injected with DCs that had been transduced ex vivo with an AAV5 vector expressing the gp160 gene elicited higher HIV-specific cell-mediated immune responses than did DCs transduced with AAV1 and AAV2 vectors. We also found that AAV vectors produced by HEK293 cells and insect cells elicit similar levels of antigen-specific immune responses. These results demonstrate that the immunogenicity of AAV vectors depends on their tropism for both antigen-presenting cells (such as DCs) and non-antigen-presenting cells (such as muscular cells) and that AAV5 is a better vector than other AAV serotypes. These results may aid in the development of AAV-based vaccine and gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号