首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Type 1 interferons such as interferon-alpha (IFNα) inhibit replication of Human immunodeficiency virus (HIV-1) by upregulating the expression of genes that interfere with specific steps in the viral life cycle. This pathway thus represents a potential target for immune-based therapies that can alter the dynamics of host-virus interactions to benefit the host. To obtain a deeper mechanistic understanding of how IFNα impacts spreading HIV-1 infection, we modeled the interaction of HIV-1 with CD4 T cells and IFNα as a dynamical system. This model was then tested using experimental data from a cell culture model of spreading HIV-1 infection. We found that a model in which IFNα induces reversible cellular states that block both early and late stages of HIV-1 infection, combined with a saturating rate of conversion to these states, was able to successfully fit the experimental dataset. Sensitivity analysis showed that the potency of inhibition by IFNα was particularly dependent on specific network parameters and rate constants. This model will be useful for designing new therapies targeting the IFNα network in HIV-1-infected individuals, as well as potentially serving as a template for understanding the interaction of IFNα with other viruses.  相似文献   

2.
3.
Circulating plasmacytoid dendritic cells (pDC) decline during HIV-1 infection, but at the same time they express markedly higher levels of interferon alpha (IFNα), which is associated with HIV-1 disease progression. Here we show an accumulation of pDC in lymph nodes (LN) of treatment-naïve HIV-1 patients. This phenomenon was associated with elevated expression of the LN homing marker, CCR7, on pDC in peripheral blood of HIV-1 patients, which conferred increased migratory capacity in response to CCR7 ligands in ex vivo functional assays. LN-homed pDC of HIV-1 patients presented higher CD40 and lower BDCA2 levels, but unchanged CD83 and CD86 expression. In addition, these cells expressed markedly higher amounts of IFNα compared to uninfected individuals, and were undergoing faster rates of cell death. These results demonstrate for the first time that in asymptomatic, untreated HIV-1 patients circulating pDC up-regulate CCR7 expression, accumulate in lymph nodes, and express high amounts of IFNα before undergoing cell death. Since IFNα inhibits cell proliferation and modulates immune responses, chronically high levels of this cytokine in LN of HIV-1 patients may impair differentiation and immune function of bystander CD4+ T cells, thus playing into the mechanisms of AIDS immunopathogenesis.  相似文献   

4.
Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.  相似文献   

5.
The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.  相似文献   

6.
African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness) and Animal African Trypanosomosis (AAT/Nagana). A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.  相似文献   

7.
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.  相似文献   

8.
HIV-1 infection is associated with a progressive loss of T cell functional capacity and reduced responsiveness to antigenic stimuli. The mechanisms underlying T cell dysfunction in HIV-1/AIDS are not completely understood. Multiple studies have shown that binding of program death ligand 1 (PD-L1) on the surface of monocytes and dendritic cells to PD-1 on T cells negatively regulates T cell function. Here we show that neutrophils in the blood of HIV-1-infected individuals express high levels of PD-L1. PD-L1 is induced by HIV-1 virions, TLR-7/8 ligand, bacterial lipopolysaccharide (LPS), and IFNα. Neutrophil PD-L1 levels correlate with the expression of PD-1 and CD57 on CD4+ and CD8+ T cells, elevated levels of neutrophil degranulation markers in plasma, and increased frequency of low density neutrophils (LDNs) expressing the phenotype of granulocytic myeloid-derived suppressor cells (G-MDSCs). Neutrophils purified from the blood of HIV-1-infected patients suppress T cell function via several mechanisms including PD-L1/PD-1 interaction and production of reactive oxygen species (ROS). Collectively, the accumulated data suggest that chronic HIV-1 infection results in an induction of immunosuppressive activity of neutrophils characterized by high expression of PD-L1 and an inhibitory effect on T cell function.  相似文献   

9.
One of the heat shock family protein (Hsp) expressing bacteria is the gram negative, periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). A. actinomycetemcomitans’ Hsp is a 64-kDa GroEL-protein, which has been shown to influence the host cells. In this study we used recombinant A. actinomycetemcomitans GroEL (rAaGroEL) protein as a model antigen to study GroEL-mediated T cell immune response. Human peripheral mononuclear cells (PBMCs), when stimulated with recombinant rAaGroEL, expressed early activation marker CD69 and IL-2R (CD25). CD25 and CD69 expressions were higher in CD4+ T cells compared to CD8+ T cells. rAaGroEL-responding CD4+ T cells expressed IL-10, IFNγ and TNFα cytokines. Interestingly, there were also IL-10 and IFNγ double cytokine producing CD4+ T cells. Additionally, IFNγ expressing CD4+ T cells were also T-bet positive. Altogether the results suggest that rAaGroEL protein affects CD4+ T cells to differentiate into IFNγ IL10-secreting T-bet+ Th1 cells.  相似文献   

10.
Interleukin 4 (IL-4) plays a central role in the orchestration of Type 2 immunity. During T cell activation in the lymph node, IL-4 promotes Th2 differentiation and inhibits Th1 generation. In the inflamed tissue, IL-4 signals promote innate and adaptive Type-2 immune recruitment and effector function, positively amplifying the local Th2 response. In this study, we identify an additional negative regulatory role for IL-4 in limiting the recruitment of Th1 cells to inflamed tissues. To test IL-4 effects on inflammation subsequent to Th2 differentiation, we transiently blocked IL-4 during ongoing dermal inflammation (using anti-IL-4 mAb) and analyzed changes in gene expression. Neutralization of IL-4 led to the upregulation of a number of genes linked to Th1 trafficking, including CXCR3 chemokines, CCL5 and CCR5 and an associated increase in IFNγ, Tbet and TNFα genes. These gene expression changes correlated with increased numbers of IFNγ-producing CD4+ T cells in the inflamed dermis. Moreover, using an adoptive transfer approach to directly test the role of IL-4 in T cell trafficking to the inflamed tissues, we found IL-4 neutralization led to an early increase in Th1 cell recruitment to the inflamed dermis. These data support a model whereby IL-4 dampens Th1-chemokines at the site of inflammation limiting Th1 recruitment. To determine biological significance, we infected mice with Leishmania major, as pathogen clearance is highly dependent on IFNγ-producing CD4+ T cells at the infection site. Short-term IL-4 blockade in established L. major infection led to a significant increase in the number of IFNγ-producing CD4+ T cells in the infected ear dermis, with no change in the draining LN. Increased lymphocyte influx into the infected tissue correlated with a significant decrease in parasite number. Thus, independent of IL-4''s role in the generation of immune effectors, IL-4 attenuates lymphocyte recruitment to the inflamed/infected dermis and limits pathogen clearance.  相似文献   

11.
The candidate malaria vaccine RTS,S/AS01E provides significant but partial protection from clinical malaria. On in vitro circumsporozoite protein (CSP) peptide stimulation and intra-cellular cytokine staining of whole blood taken from 407 5–17 month-old children in a phase IIb trial of RTS,S/AS01E, we identified significantly increased frequencies of two CSP-specific CD4+ T cells phenotypes among RTS,S/AS01E vaccinees (IFNγ-IL2+TNF− and IFNγ-IL2+TNF+ CD4+ T cells), and increased frequency of IFNγ-IL2-TNF+ CD4+ T cells after natural exposure. All these T cells phenotypes were individually associated with reductions in the risk of clinical malaria, but IFNγ-IL2-TNF+ CD4+ T cells independently predicted reduced risk of clinical malaria on multi-variable analysis (HR = 0.29, 95% confidence intervals 0.15–0.54, p<0.0005). Furthermore, there was a strongly significant synergistic interaction between CSP-specific IFNγ-IL2-TNF+ CD4+ T cells and anti-CSP antibodies in determining protection against clinical malaria (p = 0.002). Vaccination strategies that combine potent cellular and antibody responses may enhance protection against malaria.  相似文献   

12.
Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory. In the general population, peptides unique to the long-circulating influenza A/New Caledonia/20/99 (H1N1) induced Th1-like responses biased toward the expression of IFNγ+TNFα+ CD4 T cells. In contrast, peptide pools enriched for non-cross-reactive peptides of the pandemic influenza A/California/04/09 (H1N1) induced more IFNγIL-2+TNFα+ T cells, similar to the IFNγIL-2+ non-polarized, primed precursor T cells (Thpp) that are a predominant response to protein vaccination. These results were confirmed in a second study that compared samples taken before the 2009 pandemic to samples taken one month after PCR-confirmed A/California/04/09 infection. There were striking increases in influenza-specific TNFα+, IFNγ+, and IL-2+ cells in the post-infection samples. Importantly, peptides enriched for non-cross-reactive A/California/04/09 specificities induced a higher proportion of Thpp-like IFNγIL-2+TNFα+ CD4 T cells than peptide pools cross-reactive with previous influenza strains, which induced more Th1 (IFNγ+TNFα+) responses. These IFNγIL-2+TNFα+ CD4 T cells may be an important target population for vaccination regimens, as these cells are induced upon infection, may have high proliferative potential, and may play a role in providing future effector cells during subsequent infections.  相似文献   

13.
Mitogen-activated protein kinase (MAP) cascades are important in antiviral immunity through their regulation of interferon (IFN) production as well as virus replication. Although the serine-threonine MAP kinase tumor progression locus 2 (Tpl2/MAP3K8) has been implicated as a key regulator of Type I (IFNα/β) and Type II (IFNγ) IFNs, remarkably little is known about how Tpl2 might contribute to host defense against viruses. Herein, we investigated the role of Tpl2 in antiviral immune responses against influenza virus. We demonstrate that Tpl2 is an integral component of multiple virus sensing pathways, differentially regulating the induction of IFNα/β and IFNλ in a cell-type specific manner. Although Tpl2 is important in the regulation of both IFNα/β and IFNλ, only IFNλ required Tpl2 for its induction during influenza virus infection both in vitro and in vivo. Further studies revealed an unanticipated function for Tpl2 in transducing Type I IFN signals and promoting expression of interferon-stimulated genes (ISGs). Importantly, Tpl2 signaling in nonhematopoietic cells is necessary to limit early virus replication. In addition to early innate alterations, impaired expansion of virus-specific CD8+ T cells accompanied delayed viral clearance in Tpl2-/- mice at late time points. Consistent with its critical role in facilitating both innate and adaptive antiviral responses, Tpl2 is required for restricting morbidity and mortality associated with influenza virus infection. Collectively, these findings establish an essential role for Tpl2 in antiviral host defense mechanisms.  相似文献   

14.
15.
Studies of human immunodeficiency virus (HIV) and nonhuman primate models of pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infections have suggested that enhanced ex vivo CD4 T-cell death is a feature of pathogenic infection in vivo. However, the relative contributions of the extrinsic and intrinsic pathways to programmed T-cell death in SIV infection have not been studied. We report here that the spontaneous death rate of CD4+ T cells from pathogenic SIVmac251-infected rhesus macaques ex vivo is correlated with CD4 T-cell depletion and plasma viral load in vivo. CD4+ T cells from SIVmac251-infected macaques showed upregulation of the death ligand (CD95L) and of the proapoptotic proteins Bim and Bak, but not of Bax. Both CD4+ and CD8+ T cells from SIVmac251-infected macaques underwent caspase-dependent death following CD95 ligation. The spontaneous death of CD4+ and CD8+ T cells was not prevented by a decoy CD95 receptor or by a broad-spectrum caspase inhibitor (zVAD-fmk), suggesting that this form of cell death is independent of CD95/CD95L interaction and caspase activation. IL-2 and IL-15 prevented the spontaneous death of CD4+ and CD8+ T cells, whereas IL-10 prevented only CD8 T-cell death and IL-7 had no effect on T-cell death. Our results indicate that caspase-dependent and caspase-independent pathways are involved in the death of T cells in pathogenic SIVmac251-infected primates.  相似文献   

16.

Objective

Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue.

Methods

164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses.

Results

There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001).

Conclusions

Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.  相似文献   

17.
Apoptosis contributes to the loss of CD4 cells during human immunodeficiency virus type 1 (HIV-1) infection. Although the product of the env gene, gp160/gp120, is known to play a role in cell death mediated by HIV-1, the role of other HIV-1 genes in the process is unclear. We found that HIV-1 lacking the env gene (HIVΔenv) still induced apoptosis in T-cell lines and primary CD4 T cells. The ability to induce apoptosis was attributable to Tat, a viral regulatory protein. Tat induction of apoptosis was separate from the transactivation function of Tat, required expression of the second exon of Tat, and was associated with the increased expression and activity of caspase-8 (casp-8), a signaling molecule in apoptotic pathways. Moreover, induction of apoptosis could be prevented by treating cells with an inhibitor of casp-8. In addition, we show that HIV-1Δenv infection and Tat expression increased the sensitivity of cells to Fas-mediated apoptosis, an apoptotic pathway that signals via casp-8. The up-regulation of casp-8 by HIV-1 Tat expression may contribute to the increased apoptosis and sensitivity to apoptotic signals observed in the cells of HIV-1-infected persons.  相似文献   

18.
It is controversial whether the accessory human immunodeficiency virus type 1 (HIV-1) Nef protein inhibits or enhances apoptosis. To address this issue, we investigated the effect of Nef on programmed cell death with vectors or proviral HIV-1 constructs coexpressing Nef and green fluorescent protein from single bicistronic RNAs. This approach allows us to readily identify transfected or infected cells and to correlate cell death directly with Nef expression levels. We demonstrate that Nef does not significantly affect apoptosis in transfected or HIV-1-infected Jurkat T cells or primary human peripheral blood mononuclear cells. Unexpectedly, however, both nef+ and nef-defective HIV-1 infection blocked apoptosis in cells treated with UV light or etoposide but not cell death induced by CD95 antibody, TRAIL, Ly294002, or serum starvation. Our results show that HIV-1 infection inhibits DNA damage-induced but not death receptor-dependent cell death by a Nef-independent mechanism.  相似文献   

19.
CD8+ T cell-restricted immunity is important in the control of HIV-1 infection, but continued immune activation results in CD8+ T cell dysfunction. Early initiation of antiretroviral treatment (ART) and the duration of ART have been associated with immune reconstitution. Here, we evaluated whether restoration of CD8+ T cell function in HIV-1-infected individuals was dependent on early initiation of ART. HIV-specific CD107a, IFNγ, IL-2, TNFα and MIP-1β expression by CD8+ T cells and the frequency of CD8+ T cells expressing PD-1, 2B4 and CD160 were measured by flow cytometry. The frequency of CD8+ T cells expressing the inhibitory markers PD-1, 2B4 and CD160 was lower in ART-treated individuals compared with ART-naïve individuals and similar to the frequency in HIV-uninfected controls. The expression of the three markers was similarly independent of when therapy was initiated. Individuals treated before seroconversion displayed an HIV-specific CD8+ T cell response that included all five functional markers; this was not observed in individuals treated after seroconversion or in ART-naïve individuals. In summary, ART appears to restore the total CD8+ T cell population to a less exhausted phenotype, independent of the time point of initiation. However, to preserve multifunctional, HIV-1-specific CD8+ T cells, ART might have to be initiated before seroconversion.  相似文献   

20.
IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα+ pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα+ cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67+-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67+-pDC precursors, none of these being IFNα+ in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号