首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
KIT mutations in GIST   总被引:1,自引:0,他引:1  
  相似文献   

2.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in human gastrointestinal tract. We first found that most GISTs expressed KIT, a receptor tyrosine kinase encoded by protooncogene c-kit and that approximately 90% of the sporadic GISTs had somatic gain-of-function mutations of the c-kit gene. Since both GISTs and interstitial cells of Cajal (ICCs) were double-positive for KIT and CD34, GISTs were considered to originate from ICCs or their precursor cells. We also found that germline gain-of-function mutations of the c-kit gene resulted in familial and multiple GISTs with diffuse hyperplasia of ICCs as the preexisting lesion. Moreover, we found that about half of the sporadic GISTs without c-kit gene mutations had gain-of-function mutations of platelet-derived growth factor receptor alpha (PDGFRA) gene that encodes another receptor tyrosine kinase. Imatinib which is known to inhibit constitutively activated BCR-ABL tyrosine kinase in chronic myelogenous leukemia also inhibits constitutive activation of mutated KIT and PDGFRA, and is now being used for metastatic or unresectable GISTs as a molecular target drug. Mutational analyses of c-kit and PDGFRA genes are considered to be significant for prediction of effectiveness of imatinib and newly developed/developing other agents on GISTs. Some mouse models of familial and multiple GISTs have been genetically created, and may be useful for further investigation of GIST biology.  相似文献   

3.
4.
Gastrointestinal stromal tumors: key to diagnosis and choice of therapy   总被引:2,自引:0,他引:2  
The common feature of gastrointestinal stromal tumors (GISTs) is the expression of KIT protein or acquisition of activating, constitutive mutations in the KIT or platelet-derived growth factor receptor alpha (PDGFRA) genes that are the early oncogenic events during GIST development. With these discoveries, GIST has emerged as a distinct sarcoma entity, enabling the introduction of targeted therapy using the inhibition of KIT/PDGFRA and their downstream signaling cascade. The introduction of a small-molecule tyrosine kinase inhibitor, imatinib mesylate, to clinical practice has revolutionized the treatment of patients with advanced GISTs and is currently approved as first-line treatment for patients with metastatic and/or inoperable GISTs. Mutation screening is currently a tool in GIST diagnosis, assessment of sensitivity to tyrosine kinase inhibitors, and prediction of achieving response to molecularly targeted therapy.This article discusses the histologic and molecular criteria for distinguishing GISTs from other types of sarcoma, and the molecular diagnostic tools that are currently available or in development to assist in therapy decisions.  相似文献   

5.
《Translational oncology》2020,13(10):100812
Gastrointestinal stromal tumors (GISTs) are potentially malignancies that can occur anywhere in the digestive tract. Tyrosine kinase inhibitors (TKIs) such as imatinib have proven effective since the discovery of KIT and PDGFRA. The current version of NCNN, ESMO and EURACAN guidelines recognized that the three main prognostic factors are the mitotic rate, tumor size and tumor site. In addition, tumor rupture is also recognized as an independent risk factor. However, recent evidence shows that various types of gene mutations are associated with prognosis, and influencing factors such as gastrointestinal bleeding and high Ki67 index have been associated with poor prognosis. It shows that the current risk classification is still insufficient and controversial. With the emergence of more and more lack mutation in KIT/PDGFRA GISTs (KIT/PDGFRA wild-type GISTs) or drug resistance genes, primary and secondary drug resistance problems are caused, which makes the treatment of late or metastatic GIST face challenges. Therefore, this article will review the clinicopathological characteristics of GIST, the special molecular subtypes and other factors that may affect prognosis. We will also explore reliable prognostic markers for better postoperative management and improve the prognosis of patients with GIST.  相似文献   

6.
Despite the benefits of imatinib for treating gastrointestinal stromal tumors (GIST), the prognosis for high risk GIST and imatinib-resistant (IR) GIST remains poor. The mechanisms of imatinib resistance have not yet been fully clarified. The aim of the study was to establish imatinib-resistant cell lines and investigate nilotinib, a second generation tyrosine kinase inhibitor (TKI), in preclinical models of GIST and imatinib-resistant GIST. For a model of imatinib-resistant GIST, we generated resistant cells from GK1C and GK3C cell lines by exposing them to imatinib for 6 months. The parent cell lines GK1C and GK3C showed imatinib sensitivity with IC50 of 4.59±0.97 µM and 11.15±1.48 µM, respectively. The imatinib-resistant cell lines GK1C-IR and GK3C-IR showed imatinib resistance with IC50 values of 11.74±0.17 µM (P<0.001) and 41.37±1.07 µM (P<0.001), respectively. The phosphorylation status of key cell signaling pathways, receptor tyrosine kinase KIT (CD117), platelet-derived growth factor receptor alpha (PDGFRA) and downstream signaling kinases: serine-threonine kinase Akt (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) or the non-receptor tyrosine kinase: proto-oncogene tyrosine-protein kinase Src (SRC), was analyzed in established cell lines and ERK1/2 phosphorylation was found to be increased compared to the parental cells. Nilotinib demonstrated significant antitumor efficacy against GIST xenograft lines and imatinib-resistant GIST cell lines. Thus, nilotinib may have clinical potential for patients with GIST or imatinib-resistant GIST.  相似文献   

7.

Background

Imatinib has become the standard first line treatment of gastrointestinal stromal tumors (GIST) in the advanced phase and adjuvant setting. We carried out an up-to-date meta-analysis to determine the practical role of mutation analysis for imatinib treatment in patients with advanced GIST.

Methods

Eligible studies were limited to imatinib treatment for patients with advanced GIST and reported on mutation analysis. Statistical analyses were conducted to calculate the odds ratio (OR), hazard ratio (HR) and 95% confidence interval (CI) using fixed-effects and random-effects models.

Results

A total of 2834 patients from 3 randomized controlled trials and 12 cohort studies were included. The ORs of response rates in KIT exon 11-mutant GISTs were 3.504 (95% CI 2.549-4.816, p<0.001) and 3.521 (95% CI 1.731-7.165, p=0.001) compared with KIT exon 9-mutant and wild type GISTs, respectively. The HRs of progression-free survival in KIT exon 11-mutant GISTs were 0.365 (95% CI 0.301-0.444, p<0.001) and 0.375 (95% CI 0.270-0.519, p<0.001) compared with KIT exon 9-mutant and wild type GISTs. The HRs of overall survival in KIT exon 11-mutant GISTs were 0.388 (95% CI 0.293-0.515, p<0.001) and 0.400 (95% CI 0.297-0.538, p<0.001) compared with KIT exon 9-mutant and wild type GISTs. No statistical significant differences were found between KIT exon 9-mutant and wild type. The overall response rate in KIT-exon 11-mutant GISTs were 70.5% (65%-75.9%) compared with 57.1% (51%-63.2%) in KIT-positive GISTs. No evidence of publication bias was observed.

Conclusion

Patients with advanced GIST harboring a KIT exon 11 mutation have the best response rate and long-term survival with imatinib treatment. Mutation analysis would be more helpful than KIT expression analysis to decide appropriate therapy for a specific patient.  相似文献   

8.
Advanced gastrointestinal stromal tumors (GIST), a KIT oncogene-driven tumor, on imatinib mesylate (IM) treatment may develop secondary KIT mutations to confer IM-resistant phenotype. Second-line sunitinib malate (SU) therapy is largely ineffective for IM-resistant GISTs with secondary exon 17 (activation-loop domain) mutations. We established an in vitro cell-based platform consisting of a series of COS-1 cells expressing KIT cDNA constructs encoding common primary±secondary mutations observed in GISTs, to compare the activity of several commercially available tyrosine kinase inhibitors on inhibiting the phosphorylation of mutant KIT proteins at their clinically achievable plasma steady-state concentration (Css). The inhibitory efficacies on KIT exon 11/17 mutants were further validated by growth inhibition assay on GIST48 cells, and underlying molecular-structure mechanisms were investigated by molecular modeling. Our results showed that SU more effectively inhibited mutant KIT with secondary exon 13 or 14 mutations than those with secondary exon 17 mutations, as clinically indicated. On contrary, at individual Css, nilotinib and sorafenib more profoundly inhibited the phosphorylation of KIT with secondary exon 17 mutations and the growth of GIST48 cells than IM, SU, and dasatinib. Molecular modeling analysis showed fragment deletion of exon 11 and point mutation on exon 17 would lead to a shift of KIT conformational equilibrium toward active form, for which nilotinib and sorafenib bound more stably than IM and SU. In current preclinical study, nilotinib and sorafenib are more active in IM-resistant GISTs with secondary exon 17 mutation than SU that deserve further clinical investigation.  相似文献   

9.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. These tumors develop at any site but are most commonly reported in the stomach. They originate from the neoplastic transformation of the intestinal pacemaker cell, the interstitial cell of Cajal. GISTs strongly express the receptor tyrosine kinase KIT and have mutations in the KIT gene, most frequently in exon 11 encoding the intracellular juxtamembranous region. Expression of KIT is seen in almost all GISTs, regardless of the site of origin, histologic appearance, or biologic behavior, and is therefore regarded as one of the key diagnostic markers. Distinction from smooth muscle tumors, such as leiomyosarcomas, and other mesenchymal tumors is very important because of prognostic differences and therapeutic strategies. Predicting the biologic behavior of GISTs is often difficult by conventional pathologic examination; tumor size and mitotic rate are the most important prognostic indicators. The prognostic significance of KIT mutations is controversial and thus far has not been clearly linked with biologic behavior. KIT mutations are associated with tumor development, and cytogenetic aberrations are associated with tumor progression. The pathogenesis of GISTs involves a gain-of-function mutation in the KIT proto-oncogene, leading to ligand-independent constitutive activation of the KIT receptor. KIT-wild-type GISTs have shown mutually exclusive platelet-derived growth factor receptor (PDGFR) mutation and activation. The use of imatinib mesylate (also known as Gleevec or STI-571) has greatly increased the therapeutic efficacy for this otherwise chemotherapy-resistant tumor. GISTs with very low levels of KIT expression may respond to imatinib mesylate therapy if the receptors are activated by specific mechanisms. KIT-activating mutations fall into two groups: the regulatory type and the enzymatic site type. The regulatory type of mutation is conserved at the imatinib binding site, whereas the enzymatic site mutation has a structurally changed drug-binding site, resulting in drug resistance. Resistance to the drug is the major cause of treatment failure in cancer therapy, emphasizing the need for researchers to understand KIT signaling pathways so as to identify new therapeutic targets. This review summarizes the pathologic features of GISTs, recent advances in understanding their molecular and biologic features, and therapy with imatinib mesylate.  相似文献   

10.
11.
胃肠间质瘤(gastrointestinal stromal tumors,GIST)是较常见的人消化道间叶性肿瘤,多发于胃部.尽管有不同临床病理特征,但绝大多数GIST均存在c-kit或血小板衍生生长因子受体α(PDGFRA)基因突变. c-kit、PDGFRA的抑制剂—格列卫是目前主要应用于GIST治疗的分子靶向治疗药物,c-kit、PDGFRA的不同基因状态会对分子靶向治疗药物呈现不同的反应.c-kit基因外显子11发生突变的GIST对格列卫呈现良好的反应,而外显子 9突变对格列卫的反应略差.另外发现,c-kit、PDGFRA基因的二次突变会引起格列卫抗性.本文简要介绍c-kit、 PDGFRA基因与GIST的临床表现、分子靶向治疗之间的关系及其二次突变的特征.  相似文献   

12.
Gastrointestinal stromal tumors (GISTs) are common neoplasms of the gastrointestinal tract that can be treated successfully using C-kit target therapy and surgery; however, imatinib chemoresistance is a major barrier to success in therapy. The present study aimed to discover alternative pathways in imatinib-resistant GISTs. Long noncoding RNAs (lncRNAs) are newly discovered regulators of chemoresistance. Previously, we showed that the lncRNA HOTAIR was upregulated in recurrent GISTs. In this study, we analyzed differentially expressed lncRNAs after imatinib treatment and found that HOTAIR displayed the largest increase. The distribution of HOTAIR in GISTs was shifted from nucleus to cytoplasm after imatinib treatments. The expression of HOTAIR was validated as related to drug sensitivity through Cell Counting Kit-8 assays. Moreover, HOTAIR was associated strongly with cell autophagy and regulated drug sensitivity via autophagy. Mechanistically, HOTAIR correlated negatively with miRNA-130a in GISTs. The downregulation of miRNA-130a reversed HOTAIR-small interfering RNA-induced suppression of autophagy and imatinib sensitivity. We identified autophagy-related protein 2 homolog B (ATG2B) as a downstream target of miR-130a and HOTAIR. ATG2B downregulation reversed the effect of pEX-3-HOTAIR/miR-130a inhibitor on imatinib sensitivity. Finally, HOTAIR was shown to influence the autophagy and imatinib sensitivity of GIST cells in mouse tumor models. Our results suggested that HOTAIR targets the ATG2B inhibitor miR-130a to upregulate the level of cell autophagy so that promotes the imatinib resistance in GISTs.Subject terms: Oncogenes, Macroautophagy  相似文献   

13.

Objective

Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations.

Materials and Methods

Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples.

Results

Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway.

Conclusion

Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways.  相似文献   

14.
In gastrointestinal stromal tumours (GISTs), the function of bromodomain‐containing 4 (BRD4) remains underexplored. BRD4 mRNA abundance was quantified in GISTs. In the current study, we investigated the role of BRD4 in GISTs. Our results show a significant enhancement in BRD4 mRNA and a shift from very low‐risk/low‐risk to high‐risk levels as per NCCN specifications. Overexpression of BRD4 correlated with unfavourable genotype, nongastric location, enhanced risk and decreased disease‐free survival, which were predicted independently. Knockout of BRD4 in vitro suppressed KIT expression, which led to inactivation of the KIT/PI3K/AKT/mTOR pathway, impeded migration and cell growth and made the resistant GIST cells sensitive to imatinib. The expression of KIT was repressed by a BRD4 inhibitor JQ1, which also induced myristoylated‐AKT‐suppressible caspases 3 and 9 activities, induced LC3‐II, exhibited dose‐dependent therapeutic synergy with imatinib and attenuated the activation of the PI3K/AKT/mTOR pathway. In comparison with their single therapy, the combination of JQ1/imatinib more efficiently suppressed the growth of xenografts and exhibited a reduction in KIT phosphorylation, a decrease in Ki‐67 and in the levels of phosphorylated PI3K/AKT/mTOR and enhanced TUNEL staining. Thus, we characterized the biological, prognostic and therapeutic implications of overexpressed BRD4 in GIST and observed that JQ1 suppresses KIT transactivation and nullifies the activation of PI3K/AKT/mTOR, providing a potential strategy for treating imatinib‐resistant GIST through dual blockade of KIT and BRD4.  相似文献   

15.
Monocarboxylate transporters (MCTs) have been described to play an important role in cancer, but to date there are no reports on the significance of MCT expression in gastrointestinal stromal tumors (GISTs). The aim of the present work was to assess the value of MCT expression, as well as co-expression with the MCT chaperone CD147 in GISTs and evaluate their clinical-pathological significance. We analyzed the immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 in a series of 64 GISTs molecularly characterized for KIT, PDGFRA and BRAF mutations. MCT1, MCT2 and MCT4 were highly expressed in GISTs. CD147 expression was associated with mutated KIT (p?=?0.039), as well as a progressive increase in Fletcher's Risk of Malignancy (p?=?0.020). Importantly, co-expression of MCT1 with CD147 was associated with low patient's overall survival (p?=?0.037). These findings suggest that co-expression of MCT1 with its chaperone CD147 is involved in GISTs aggressiveness, pointing to a contribution of cancer cell metabolic adaptations in GIST development and/or progression.  相似文献   

16.
Activation of receptor tyrosine kinases needs tight control by tyrosine phosphatases to keep their normal function. In this study, we investigated the regulation of activation of the type III receptor tyrosine kinase KIT by protein tyrosine phosphatase receptor type E (PTPRE). We found that PTPRE can associate with wild-type KIT and inhibit KIT activation in a dose-dependent manner, although the activation of wild-type KIT is dramatically inhibited even when PTPRE is expressed at low level. The D816V mutation of KIT is the most frequently found oncogenic mutation in mastocytosis, and we found that PTPRE can associate and inhibit the activation of KIT/D816V in a dose dependent manner, but the inhibition is much weaker compared with wild-type KIT. Similar to mastocytosis, KIT mutations are the main oncogenic mutations in gastrointestinal stromal tumors (GISTs) although GISTs carry different types of KIT mutations. We further studied the regulation of the activation of GISTs-type KIT mutants and other mastocytosis-type KIT mutants by PTPRE. Indeed, PTPRE can almost block the activation of GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to the inhibition of PTPRE. Taken together, our results suggest that PTPRE can associate with KIT, and inhibit the activation of both wild-type KIT and GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to PTPRE.  相似文献   

17.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs represent a distinct category of tumors characterized by oncogenic mutations of the KIT receptor tyrosine kinase in a majority of patients. KIT is useful not only for the diagnosis but also for targeted therapy of this disease. Imatinib, a tyrosine kinase inhibitor, is widely used in advanced and metastatic GISTs. This agent revolutionized the treatment strategy of advanced disease and is being tested in the neoadjuvant and adjuvant settings with encouraging results. New therapeutic agents like sunitinib have now been approved, enriching the treatment scenario for imatinib-resistant GISTs. The present review reports on the peculiar characteristics of this disease through its biology and molecular patterns, focusing on the predictive value of KIT mutations and their correlation with clinical outcome as well as on the activity of and resistance to approved targeted drugs.  相似文献   

18.

Background

The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT.

Methodology/Principal Findings

In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200±40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150±80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant.

Conclusions

Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity.  相似文献   

19.
Kang HJ  Koh KH  Yang E  You KT  Kim HJ  Paik YK  Kim H 《Proteomics》2006,6(4):1151-1157
Most gastrointestinal stromal tumors (GIST) have activating mutations in either KIT or PDGFRA. However, a small subset of GIST lacks either mutation. To investigate the molecular characteristics of GIST according to mutation type, protein expression profiles in 12 GIST (2 cases with PDGFRA mutations, 8 cases with KIT mutations and 2 cases lacking either mutation) were analyzed using 2-DE and MALDI-TOF-MS. Comparative analysis of the respective spot patterns using 2-DE showed that 15 proteins were differently expressed according to the mutation status. Expression levels of septin and heat shock protein (HSP) 27 were increased in GIST with KIT mutations and annexin V was overexpressed in GIST lacking either mutation. Among the 15 proteins, overexpression of 5 proteins [annexin V, high mobility group protein 1 (HMGB1), C13orf2, glutamate dehydrogenase 1 and fibrinogen beta chain] and decreased expression of RoXaN correlated with a higher tumor grade. These findings suggest that differential protein expression can be used as a diagnostic biomarker. Moreover, it may play a role in the development and progression of GIST according to activating mutation type, as these proteins have been shown to be involved in tumor metastasis, apoptosis and immune response.  相似文献   

20.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Approximately 85% of GISTs harbor activating mutations of the KIT or PDGFRA receptor tyrosine kinases. PTEN and SHIP2 are major phosphatases that dephosphorylate PI(3,4,5)P3, one of the intracellular signal pathways downstream of KIT. PTEN is an important tumor suppressor, whereas the involvement of SHIP2 in cancer has been proposed based essentially on cell line studies. We have used a mouse model of GIST, i.e. KitK641E knock-in mice, resulting in the substitution of a Lys by Glu at position 641 of Kit. In homozygous KitK641E mice, PTEN-immunoreactivity (ir) in antrum was found in the hyperplastic Kit-ir layer. The same localization was found for SHIP2. Western blot analysis in antrum showed a large increase in PTEN expression in KitK641E homozygous mice as compared to wild type. In contrast, SHIP2 expression was not affected between the two genotypes. Erk1, but not PKB, phosphorylation appears to be upregulated in KitK641E homozygous mice. In the human GIST882 imatinib sensitive cell line, both PTEN and SHIP2 were expressed and showed, in part, a nuclear localization. The upregulation of PTEN in antrum in KitK641E mice might serve as a feedback mechanism to limit PI 3-kinase activation downstream of Kit in a context of oncogenic mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号