首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study focuses on the expansion of Phaseolus vulgaris in Europe. The pathways of distribution of beans into and across Europe were very complex, with several introductions from the New World that were combined with direct exchanges between European and other Mediterranean countries. We have analyzed here six chloroplast microsatellite (cpSSR) loci and two unlinked nuclear loci (for phaseolin types and Pv-shatterproof1). We have assessed the genetic structure and level of diversity of a large collection of European landraces of P. vulgaris (307) in comparison to 94 genotypes from the Americas that are representative of the Andean and Mesoamerican gene pools. First, we show that most of the European common bean landraces (67%) are of Andean origin, and that there are no strong differences across European regions for the proportions of the Andean and Mesoamerican gene pools. Moreover, cytoplasmic diversity is evenly distributed across European regions. Secondly, the cytoplasmic bottleneck that was due to the introduction of P. vulgaris into the Old World was very weak or nearly absent. This is in contrast to evidence from nuclear analyses that have suggested a bottleneck of greater intensity. Finally, we estimate that a relatively high proportion of the European bean germplasm (about 44%) was derived from hybridization between the Andean and Mesoamerican gene pools. Moreover, although hybrids are present everywhere in Europe, they show an uneven distribution, with high frequencies in central Europe, and low frequencies in Spain and Italy. On the basis of these data, we suggest that the entire European continent and not only some of the countries therein can be regarded as a secondary diversification center for P. vulgaris. Finally, we outline the relevance of these inter-gene pool hybrids for plant breeding.  相似文献   

2.
Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples.  相似文献   

3.
Selection and random genetic drift are the two main forces affecting allele frequencies in common bean breeding programs. Therefore, knowledge on allele frequency changes attributable to these forces is of fundamental importance for breeders. The changes in frequencies of alleles of biochemical markers were examined in F2 to F7 populations derived from crosses between cultivated Mesoamerican and Andean common bean accessions (Phaseolus vulgaris L.). Biochemical markers included the seed proteins phaseolin, lectin and other seed polypeptides, and six isozymes. The Schaffer’s test detected a high significant linear trend of the 63% of the polymorphic loci studied, meaning that directional selection was acting on those loci. Associations between seed size traits, phaseolin seed-storage protein and isozyme markers were detected based on the comparisons of the progeny genotypic means. In the interracial populations the intermediate form PhaH/T, b6, and Rbcs 98 alleles had a positive effect on seed size. In the inter-gene pool populations, a higher transmission of Mesoamerican alleles in all loci was showed, although the Andean alleles PhaT, Skdh 100 , Rbcs 98 , and Diap 100 showed positive effects on seed weight. Our results suggest that phaseolin and other seed proteins markers are linked to loci affecting seed size. These markers have good potential for improving the results of the selection and should be considered as a strategy for germplasm enhancement and to avoid the reduced performance of the inter-gene pool populations.  相似文献   

4.
Most studies on the genetic diversity of common bean (Phaseolus vulgaris L.) have focussed on accessions from the Mesoamerican gene pool compared to the Andean gene pool. A deeper knowledge of the genetic structure of Argentinian germplasm would enable researchers to determine how the Andean domestication event affected patterns of genetic diversity in domesticated beans and to identify candidates for genes targeted by selection during the evolution of the cultivated common bean. A collection of 116 wild and domesticated accessions representing the diversity of the Andean bean in Argentina was genotyped by means of 114 simple sequence repeat (SSR) markers. Forty-seven Mesoamerican bean accessions and 16 Andean bean accessions representing the diversity of Andean landraces and wild accessions were also included. Using the Bayesian algorithm implemented in the software STRUCTURE we identified five major groups that correspond to Mesoamerican and Argentinian wild accessions and landraces and a group that corresponds to accessions from different Andean and Mesoamerican countries. The neighbour-joining algorithm and principal coordinate clustering analysis confirmed the genetic relationships among accessions observed with the STRUCTURE analysis. Argentinian accessions showed a substantial genetic variation with a considerable number of unique haplotypes and private alleles, suggesting that they may have played an important role in the evolution of the species. The results of statistical analyses aimed at identifying genomic regions with consistent patterns of variation were significant for 35 loci (~20 % of the SSRs used in the Argentinian accessions). One of these loci mapped in or near the genomic region of the glutamate decarboxylase gene. Our data characterize the population structure of the Argentinian germplasm. This information on its diversity will be very valuable for use in introgressing Argentinian genes into commercial varieties because the majority of present-day common bean varieties are of Andean origin.  相似文献   

5.
Studies of the level and the structure of the genetic diversity of local varieties of Phaseolus vulgaris are of fundamental importance, both for the management of genetic resources and to improve our understanding of the pathways of dissemination and the evolution of this species in Europe. We have here characterized 73 local bean populations from Sardinia (Italy) using seed traits and molecular markers (phaseolins, nuSSRs and cpSSRs). American landraces and commercial varieties were also included for comparison. We see that: (a) the Sardinian material is distinct from the commercial varieties considered; (b) the variation in the seed traits is high and it mostly occurs among populations (95%); (c) compared to the American sample and the commercial varieties, the Sardinian collection has a low level of diversity; (d) the majority (>95%) of the Sardinian individuals belong to the Andean gene pool; (e) the Sardinian material shows a strong genetic structure, both for cpSSRs and nuSSRs; (f) the nuSSRs and cpSSRs concur in differentiating between gene pools, but a lack of congruence between nuclear and chloroplast has been observed within gene pools; and (g) there are three putative hybrids between the Andean and Mesoamerican gene pools. Despite the relatively low level of diversity, which is probably due to a strong founder effect, the Sardinian landraces are worth being conserved and studied further because of their distinctiveness and because hybridization within and between the gene pools could generate variation that will be useful for breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
中国普通菜豆形态性状分析及分类   总被引:5,自引:1,他引:5  
对129份中国普通菜豆地方品种的形态性状进行分析,结果表明,8个性状共检测到35个变异类型,平均变异类型为4.375个,平均多态信息含量为0.5638。中国普通菜豆包括安第斯和中美两个基因库种质,中美洲基因库资源在参试资源中比重较大,但安第斯基因库资源遗传多样性水平高于中美基因库材料。由中美基因库向安第斯基因库渗透的天然杂交种质可为普通菜豆高产、优质、抗逆育种提供有价值的桥梁品种。  相似文献   

7.
Cultivated common bean germplasm is especially diverse due to the parallel domestication of two genepools in the Mesoamerican and Andean centers of diversity and introgression between these gene pools. Classification into morphological races has helped to provide a framework for utilization of this cultivated germplasm. Meanwhile, core collections along with molecular markers are useful tools for organizing and analyzing representative sets of these genotypes. In this study, we evaluated 604 accessions from the CIAT core germplasm collection representing wide genetic variability from both primary and secondary centers of diversity with a newly developed, fluorescent microsatellite marker set of 36 genomic and gene-based SSRs to determine molecular diversity and with seed protein analysis to determine phaseolin alleles. The entire collection could be divided into two genepools and five predominant races with the division between the Mesoamerica race and the Durango–Jalisco group showing strong support within the Mesoamerican genepool and the Nueva Granada and Peru races showing less diversity overall and some between-group admixture within the Andean genepool. The Chile race could not be distinguished within the Andean genepool but there was support for the Guatemala race within the Mesoamerican genepool and this race was unique in its high level of diversity and distance from other Mesoamerican races. Based on this population structure, significant associations were found between SSR loci and seed size characteristics, some on the same linkage group as the phaseolin locus, which previously had been associated with seed size, or in other regions of the genome. In conclusion, this study has shown that common bean has very significant population structure that can help guide the construction of genetic crosses that maximize diversity as well as serving as a basis for additional association studies.  相似文献   

8.
Relatively few studies have extensively analysed the genetic diversity of the runner bean through molecular markers. Here, we used six chloroplast microsatellites (cpSSRs) to investigate the cytoplasmic diversity of 331 European domesticated accessions of the scarlet runner bean (Phaseolus coccineus L.), including the botanical varieties albiflorus, bicolor and coccineus, and a sample of 49 domesticated and wild accessions from Mesoamerica. We further explored the pattern of diversity of the European landraces using 12 phenotypic traits on 262 individuals. For 158 European accessions, we studied the relationships between cpSSR polymorphisms and phenotypic traits. Additionally, to gain insights into the role of gene flow and migration, for a subset of 115 accessions, we compared and contrasted the results obtained by cpSSRs and phenotypic traits with those obtained in a previous study with 12 nuclear microsatellites (nuSSRs). Our results suggest that both demographic and selective factors have roles in the shaping of the population genetic structure of the European runner bean. In particular, we infer the existence of a moderate-to-strong cytoplasmic bottleneck that followed the expansion of the crop into Europe, and we deduce multiple domestication events for this species. We also observe an adaptive population differentiation in the phenology across a latitudinal gradient, which suggests that selection led to the diversification of the runner bean in Europe. The botanical varieties albiflorus, bicolor and coccineus, which are based solely on flower colour, cannot be distinguished based on these cpSSRs and nuSSRs, nor according to the 12 quantitative traits.  相似文献   

9.
Southwestern Europe has been considered as a secondary centre of genetic diversity for the common bean. The dispersal of domesticated materials from their centres of origin provides an experimental system that reveals how human selection during cultivation and adaptation to novel environments affects the genetic composition. In this paper, our goal was to elucidate how distinct events could modify the structure and level of genetic diversity in the common bean. The genome-wide genetic composition was analysed at 42 microsatellite loci in individuals of 22 landraces of domesticated common bean from the Mesoamerican gene pool. The accessions were also characterised for phaseolin seed protein and for nine allozyme polymorphisms and phenotypic traits. One of this study’s important findings was the complementary information obtained from all the polymorphisms examined. Most of the markers found to be potentially under the influence of selection were located in the proximity of previously mapped genes and quantitative trait loci (QTLs) related to important agronomic traits, which indicates that population genomics approaches are very efficient in detecting QTLs. As it was revealed by outlier simple sequence repeats, loci analysis with STRUCTURE software and multivariate analysis of phenotypic data, the landraces were grouped into three clusters according to seed size and shape, vegetative growth habit and genetic resistance. A total of 151 alleles were detected with an average of 4 alleles per locus and an average polymorphism information content of 0.31. Using a model-based approach, on the basis of neutral markers implemented in the software STRUCTURE, three clusters were inferred, which were in good agreement with multivariate analysis. Geographic and genetic distances were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Genomic scans using both markers linked to genes affected by selection (outlier) and neutral markers showed advantages relative to other approaches, since they help to create a more complete picture of how adaptation to environmental conditions has sculpted the common bean genomes in southern Europe. The use of outlier loci also gives a clue about what selective forces gave rise to the actual phenotypes of the analysed landraces.  相似文献   

10.
中国普通菜豆种质资源朊蛋白变异及多样性分析   总被引:1,自引:0,他引:1  
朊蛋白是研究普通菜豆遗传多样性的一种重要且有效的生化标记。本试验通过SDS-PAEG凝胶电泳检测中国普通菜豆种质资源的朊蛋白变异类型,分析中国普通菜豆种质资源的遗传多样性及组成特点。来自中国13个省(自治区)的445份供试材料共检测到S、Sb、Sd、B、C、CA、T、PA、To、H、H1、CH 12种朊蛋白类型,表明中国普通菜豆种质朊蛋白变异类型丰富,遗传多样性水平较高。其中,Sb型朊蛋白种质最多,占比29.0%;T型其次,占比28.1%。依据朊蛋白类型在不同基因库的特异性,将研究材料明显地区分为中美基因库和安第斯基因库两大类。研究还发现中国普通菜豆种质资源中地方种质朊蛋白类型变异丰富,多样性明显高于现代育成品种或品系。最后,对种质朊蛋白类型与百粒重、子粒颜色、粒型进行相关性分析,结果表明朊蛋白类型与百粒重呈极显著正相关,而朊蛋白类型与子粒颜色、粒型2个性状之间无明显相关性。本研究结果将为普通菜豆种质资源的保护及有效地挖掘优质种质资源提供理论依据。  相似文献   

11.
Domesticated materials with well-known wild relatives provide an experimental system to reveal how human selection during cultivation affects genetic composition and adaptation to novel environments. In this paper, our goal was to elucidate how two geographically distinct domestication events modified the structure and level of genetic diversity in common bean. Specifically, we analyzed the genome-wide genetic composition at 26, mostly unlinked microsatellite loci in 349 accessions of wild and domesticated common bean from the Andean and Mesoamerican gene pools. Using a model-based approach, implemented in the software STRUCTURE, we identified nine wild or domesticated populations in common bean, including four of Andean and four of Mesoamerican origins. The ninth population was the putative wild ancestor of the species, which was classified as a Mesoamerican population. A neighbor-joining analysis and a principal coordinate analysis confirmed genetic relationships among accessions and populations observed with the STRUCTURE analysis. Geographic and genetic distances in wild populations were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Domesticated common bean populations possessed lower genetic diversity, higher F ST, and generally higher linkage disequilibrium (LD) than wild populations in both gene pools; their geographic distributions were less correlated with genetic distance, probably reflecting seed-based gene flow after domestication. The LD was reduced when analyzed in separate Andean and Mesoamerican germplasm samples. The Andean domesticated race Nueva Granada had the highest F ST value and widest geographic distribution compared to other domesticated races, suggesting a very recent origin or a selection event, presumably associated with a determinate growth habit, which predominates in this race. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
An investigation was made of the phylogenetic relationships among wild accessions of Lima bean (Phaseolus lunatus) and wild allies of Mesoamerican and Andean origins, using electrophoresis of seed storage proteins and isozymes. Mesoamerican wild species are phylogenetically more distant fromP. lunatus than Andean species, and apparently belong to the tertiary gene pool of Lima bean. The Andean wild species, which are investigated for the first time, reveal a high similarity to the Lima bean, and particularly with its Mesoamerican gene pool. These Andean species probably constitute a secondary gene pool of Lima bean, and are thus of considerable interest in the context of genetic improvement of the crop. Based on these observations, an Andean origin is suggested for the Andean wild species and forP. lunatus. These results point out the importance of collecting and conserving AndeanPhaseolus germplasm.  相似文献   

13.
Summary Previous examination of intraspecific mitochondrial DNA (mtDNA) diversity in common bean, Phaseolus vulgaris, showed that five restriction fragment length polymorphisms (RFLPs) distinguish the mitochondrial genomes of the two major gene pools of cultivated beans, the Mesoamerican and the Andean. In the study presented here, mtDNA was used to compare the amount of diversity in cultivated beans to that in collections of wild beans to gain an understanding of how and when the mitochondrial genomes of the gene pools became distinct. The mtDNA of six wild bean accessions from Central and South America were digested with nine restriction endonucleases and analyzed by Southern hybridization. A total of twenty RFLPs were detected demonstrating a significantly higher amount of mtDNA variability in wild beans than in cultivated ones. All of the wild beans had the same mtDNA pattern for four out of the five inter-gene pool RFLPs, indicating that the polymorphism arose soon after domestication: two in the gene pool of the cultivated Mesoamerican beans and two in the gene pool of the cultivated Andean beans. The fifth RFLP must have occurred before domestication since the locus was also polymorphic in the wild beans. Wild beans from the south Andes were distinct and less variable than wild accessions of the north Andes and Mesoamerica. The distribution of mtDNA RFLPs among the wild beans supports the concept of two distinct domestication events for P. vulgaris.  相似文献   

14.

Background and Aims

The actual number of domestications of a crop is one of the key questions in domestication studies. Answers to this question have generally been based on relationships between wild progenitors and domesticated descendants determined with anonymous molecular markers. In this study, this question was investigated by determining the number of instances a domestication phenotype had been selected in a crop species. One of the traits that appeared during domestication of common bean (Phaseolus vulgaris) is determinacy, in which stems end with a terminal inflorescence. It has been shown earlier that a homologue of the arabidopsis TFL1 gene – PvTFL1y – controls determinacy in a naturally occurring variation of common bean.

Methods

Sequence variation was analysed for PvTFL1y in a sample of 46 wild and domesticated accessions that included determinate and indeterminate accessions.

Key Results

Indeterminate types – wild and domesticated – showed only synonymous nucleotide substitutions. Determinate types – observed only among domesticated accessions – showed, in addition to synonymous substitutions, non-synonymous substitutions, indels, a putative intron-splicing failure, a retrotransposon insertion and a deletion of the entire locus. The retrotransposon insertion was observed in 70 % of determinate cultivars, in the Americas and elsewhere. Other determinate mutants had a more restricted distribution in the Americas only, either in the Andean or in the Mesoamerican gene pool of common bean.

Conclusions

Although each of the determinacy haplotypes probably does not represent distinct domestication events, they are consistent with the multiple (seven) domestication pattern in the genus Phaseolus. The predominance of determinacy in the Andean gene pool may reflect domestication of common bean prior to maize introduction in the Andes.  相似文献   

15.
We have been examining the importance of the root system on shoot growth and development using a developmentally disabled hybrid of the common bean Phaseolus vulgaris L. Parental cultivars (P. Vulgaris cv. Redkloud of Mesoamerican origin, and P. vulgaris cv. Batt of Andean origin) grow normally, but crosses produce F1 hybrids exhibiting hybrid weakness associated with reduced root and shoot growth. In this study, applications of benzylaminopurine (BAP) to roots of F1 hybrids increased the number of root tips and leaves. Reciprocal grafting was used to study the effects of the root system on shoots. Grafting of roots of the Mesoamerican cultivar onto shoots of F1 hybrids increased the cytokinin concentrations in leaves of F1 hybrids and removed the characteristics associated with hybrid weakness. To determine whether factors in the xylem sap enhanced leaf growth, leaf discs were incubated on sap collected from Mesoamerican and Andean cultivars. Sap from Mesoamerican plants enhanced the growth of leaf discs excised from F1 hybrids more than sap collected from Andean cultivars. Estimates of the transport of zeatin riboside (ZR)–type cytokinins from roots of F1 hybrids indicated that transport out of hybrid roots was reduced compared with those transported out of Mesoamerican or Andean roots. Results suggest that ZR-type cytokinins are involved in hormonal integration between roots and shoots of P. vulgaris and that one of the barriers to hybridization between Andean and Mesoamerican landraces is related to hormone transport. Received October 15, 1998; accepted May 12, 1999  相似文献   

16.
A sample of 106 wild forms and 99 landraces of common bean (Thaseolus vulgaris) from Middle America and the Andean region of South America were screened for variability in phaseolin seed protein using one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and two-dimensional isoelectric focusing SDS/PAGE. The Middle American wild forms exhibited phaseolin patterns similar to the ‘S’ pattern described previously in cultivated forms, as well as a wide variety of additional banding patterns—‘M’ (Middle America) types—not encountered among common bean cultivars. The Andean wild forms showed only the ‘T’ phaseolin pattern, also described previously among cultivated forms. Landraces from Middle America showed ‘S’ or ‘S’-like patterns with the exception of 2 lines with ‘T’ phaseolin. In Andean South America, a majority of landraces had the ‘T’ phaseolin. Additional types represented in that region were (in decreasing order of frequency) the ‘S’ and ‘C’ types (already described among cultivated forms) as well as the ‘H’ (Huevo de huanchaco) and ‘A’ (Ayacucho), (new patterns previously undescribed among wild and cultivated beans). In each region—Middle America and Andean South America—the seeds of landraces with ‘T’ phaseolin were significantly larger than those of landraces with ‘S’ phaseolin. No significant differences in seed size were observed among landraces with ‘T,’ ‘C,’ ‘H,’ and ‘A’ phaseolin types of the Andean region. Our data favor 2 primary areas of domestication, one in Middle America leading to small-seeded cultivars with ‘S’ phaseolin patterns and the other in the Andes giving rise to large-seeded cultivars with ‘T’ (and possibly ‘C,’ ‘H,’ and ‘A’) phaseolin patterns.  相似文献   

17.
Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)   总被引:7,自引:0,他引:7  
A diversity survey was used to estimate allelic diversity and heterozygosity of 129 microsatellite markers in a panel of 44 common bean (Phaseolus vulgaris L.) genotypes that have been used as parents of mapping populations. Two types of microsatellites were evaluated, based respectively on gene coding and genomic sequences. Genetic diversity was evaluated by estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes. Gene-based microsatellites proved to be less polymorphic than genomic microsatellites in terms of both number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594) while greater size differences between the largest and the smallest allele were observed for the genomic microsatellites than for the gene-based microsatellites (31.4 vs. 19.1 bp). Markers that showed a high number of alleles were identified with a maximum of 28 alleles for the marker BMd1. The microsatellites were useful for distinguishing Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars. Greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool and polymorphism rate between genotypes was consistent with genepool and race identity. Comparisons between Andean genotypes had higher polymorphism (53.0%) on average than comparisons among Mesoamerican genotypes (33.4%). Within the Mesoamerican parental combinations, the intra-racial combinations between Mesoamerica and Durango or Jalisco race genotypes showed higher average rates of polymorphism (37.5%) than the within-race combinations between Mesoamerica race genotypes (31.7%). In multiple correspondance analysis we found two principal clusters of genotypes corresponding to the Mesoamerican and Andean gene pools and subgroups representing specific races especially for the Nueva Granada and Peru races of the Andean gene pool. Intra population diversity was higher within the Andean genepool than within the Mesoamerican genepool and this pattern was observed for both gene-based and genomic microsatellites. Furthermore, intra-population diversity within the Andean races (0.356 on average) was higher than within the Mesoamerican races (0.302). Within the Andean gene pool, race Peru had higher diversity compared to race Nueva Granada, while within the Mesoamerican gene pool, the races Durango, Guatemala and Jalisco had comparable levels of diversity which were below that of race Mesoamerica.  相似文献   

18.
 Genetic diversity and structure within a Lima bean (Phaseolus lunatus L.) base collection have been evaluated using allozyme markers. The results obtained from the analysis of wild and cultivated accessions confirm the existence of Andean and Mesoamerican gene pools characterised by specific alleles. Wild and cultivated accessions of the same gene pool are grouped. The Andean natural populations have a very limited geographic distribution between Ecuador and northern Peru. The Mesoamerican wild form extends from Mexico up to Argentina through the eastern side of the Andes. Andean and Mesoamerican cultivated accessions of pantropical distribution contribute substantially to the genetic diversity of the Lima bean base collection. Population genetic parameters, estimated from allozymes, confirmed the predominant selfing mating system of the Lima bean. The selfing mating system, the occurrence of small populations, and low gene flow lead to an interpopulation gene diversity (DST=0.235) higher than the intrapopulation gene diversity (HS=0.032). On the basis of the results, guidelines are given to preserve and exploit the genetic diversity of this threatened species. The results also confirm the independent domestication of the Lima bean in at least two centres, one of which is located at medium elevation in the western valleys of Ecuador and northern Peru. Received: 3 June 1997 / Accepted: 17 June 1997  相似文献   

19.
 Chloroplast DNA (cpDNA) diversity has been examined using PCR-RFLP and RFLP strategies for phylogenetic studies in the genus Phaseolus. Twenty-two species, including 4 of the 5 cultivated species (P. lunatus L., the Lima bean; P. vulgaris L., the common bean; P. coccineus L., the runner bean and P. polyanthus Greenman, the year-bean), represented by 86 accessions were included in the study. Six PCR primers designed from cpDNA and a total cpDNA probe were used for generating markers. Phylogenetic reconstruction using both Wagner parsimony and the neighbor-joining method was applied to the restriction fragment data obtained from each of the molecular approaches. P. vulgaris L. was shown to separate with several species of largely Mesoamerican distribution, including P. coccineus L. and P. polyanthus Greenman, whereas P. lunatus L. forms a complex with 3 Andean species (P. pachyrrhizoides Harms, P. augusti Harms and P. bolivianus Piper) co-evolving with a set of companion species with a Mesoamerican distribution. Andean forms of the Lima bean are found to be more closely related to the 3 Andean wild species than its Mesoamerican forms. An Andean origin of the Lima bean and a double derivative process during the evolution of P. lunatus are suggested. The 3 Andean species are proposed to constitute the secondary gene pool of P. lunatus, while its companion allies of Mesoamerican distribution can be considered as members of its tertiary gene pool. On the basis of these data, an overview on the evolution of the genus Phaseolus is also discussed. Received: 1 May 1998 / Accepted: 13 July 1998  相似文献   

20.
Common bean can be grown as a grain crop (dry beans) or as a fresh vegetable (snap beans/green beans), both items being important in nutritional terms for providing essential minerals and vitamins to the diet. Snap beans are thought to be derived predominantly from dry beans of the Andean genepool and to be of a recent European origin; however, the existence of Mesoamerican genepool characteristics especially in traditional indeterminate growth habit snap beans indicates a wider origin. The objective of this study was to evaluate genetic diversity within a set of 120 indeterminate (pole type) snap beans and 7 control genotypes representing each genepool using amplified fragment length polymorphism (AFLP) and simple sequence repeat or microsatellite (SSR) markers. The genotypes were predominantly from Asia, Europe and the United States but included some varieties from Latin America and Africa. AFLP polymorphism ranged from 53.2 to 67.7% while SSR polymorphism averaged 95.3% for the 32 fluorescent and 11 non-fluorescent markers evaluated and total expected heterozygosity was higher for SSR markers (0.521) than for AFLP markers (0.209). Both marker systems grouped the genotypes into two genepools with Andean and Mesoamerican controls, respectively, with the Mesoamerican group being predominant in terms of the number of genotypes assigned to this genepool. Phaseolin alleles were not tightly associated with genepool assignment indicating that introgression of this locus had occurred between the genepools, especially with phaseolin “S” in the Andean group (23.5%) and phaseolins “T” and “C” in the Mesoamerican group (12.2 and 8.2%, respectively). The implications of these results on the origin of pole type snap beans and on breeding strategies for this horticultural crop are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号