首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cell polarization is a prerequisite for essential processes such as cell migration, proliferation or differentiation. The yeast Saccharomyces cerevisiae under control of the GTPase Cdc42 is able to polarize without the help of cytoskeletal structures and spatial cues through a pathway depending on its guanine nucleotide dissociation inhibitor (GDI) Rdi1. To develop a fundamental understanding of yeast polarization we establish a detailed mechanistic model of GDI-mediated polarization. We show that GDI-mediated polarization provides precise spatial and temporal control of Cdc42 signaling and give experimental evidence for our findings. Cell cycle induced changes of Cdc42 regulation enhance positive feedback loops of active Cdc42 production, and thereby allow simultaneous switch-like regulation of focused polarity and Cdc42 activation. This regulation drives the direct formation of a unique polarity cluster with characteristic narrowing dynamics, as opposed to the previously proposed competition between transient clusters. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms.  相似文献   

2.
The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3beta homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.  相似文献   

3.
Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.  相似文献   

4.
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.  相似文献   

5.
Rho-type GTPases control many cytoskeletal rearrangements, but their regulation remains poorly understood. Here, we show that in S. cerevisiae, activation of the CDK Cdc28-Cln2 at bud emergence triggers relocalization of Cdc24, the GEF for Cdc42, from the nucleus to the polarization site, where it is stably maintained by binding to the adaptor Bem1. Locally activated Cdc42 then polarizes the cytoskeleton in a manner dependent on its effectors Bni1 and the PAK-like kinase Cla4. In addition, Cla4 induces phosphorylation of Cdc24, leading to its dissociation from Bem1 at bud tips, thereby ending polarized bud growth in vivo. Our results thus suggest a dynamic temporal and spatial regulation of the Cdc42 module: Cdc28-Cln triggers actin polarization by activating Cdc42, which in turn restricts its own activation via a negative feedback loop acting on its GEF Cdc24.  相似文献   

6.
To form epithelial organs cells must polarize and generate de novo an apical domain and lumen. Epithelial polarization is regulated by polarity complexes that are hypothesized to direct downstream events, such as polarized membrane traffic, although this interconnection is not well understood. We have found that Rab11a regulates apical traffic and lumen formation through the Rab guanine nucleotide exchange factor (GEF), Rabin8, and its target, Rab8a. Rab8a and Rab11a function through the exocyst to target Par3 to the apical surface, and control apical Cdc42 activation through the Cdc42 GEF, Tuba. These components assemble at a transient apical membrane initiation site to form the lumen. This Rab11a-directed network directs Cdc42-dependent apical exocytosis during lumen formation, revealing an interaction between the machineries of vesicular transport and polarization.  相似文献   

7.
Saccharomyces cerevisiae Cdc42p functions as a GTPase molecular switch, activating multiple signaling pathways required to regulate cell cycle progression and the actin cytoskeleton. Regulatory proteins control its GTP binding and hydrolysis and its subcellular localization, ensuring that Cdc42p is appropriately activated and localized at sites of polarized growth during the cell cycle. One of these, the Rdi1p guanine nucleotide dissociation inhibitor, negatively regulates Cdc42p by extracting it from cellular membranes. In this study, the technique of bimolecular fluorescence complementation (BiFC) was used to study the dynamic in vivo interactions between Cdc42p and Rdi1p. The BiFC data indicated that Cdc42p and Rdi1p interacted in the cytoplasm and around the periphery of the cell at the plasma membrane and that this interaction was enhanced at sites of polarized cell growth during the cell cycle, i.e., incipient bud sites, tips and sides of small- and medium-sized buds, and the mother-bud neck region. In addition, a ring-like structure containing the Cdc42p-Rdi1p complex transiently appeared following release from G1-phase cell cycle arrest. A homology model of the Cdc42p-Rdi1p complex was used to introduce mutations that were predicted to affect complex formation. These mutations resulted in altered BiFC interactions, restricting the complex exclusively to either the plasma membrane or the cytoplasm. Data from these studies have facilitated the temporal and spatial modeling of Rdi1p-dependent extraction of Cdc42p from the plasma membrane during the cell cycle.  相似文献   

8.
Cell division control protein 42 homolog (Cdc42) influences a variety of cellular responses such as cell migration and polarity. Deregulation of Cdc42 has been associated with several human diseases and developmental disorders. Over-activation of Cdc42 through guanine nucleotide exchange factor (GEF) is a critical event for Cdc42 involved cancer metastasis. Members of DOCK family of GEF are important activators of Cdc42. However, this activation mechanism is still unknown. Molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations were employed to investigate the central step of the activation of Cdc42: the dissociation mechanism of GDP from Cdc42 via DOCK9. Simulation results show that Mg2+ ion has a remarkable influence on the conformational change of switch I of Cdc42 through residue Pro34 which functions as a “clasp” to control the flexibility of switch I. In the GDP dissociation process, the Mg2+ ion leave first to result in a suitable conformation of Cdc42 for following DOCK9 binding to. When DOCK9 binds to Cdc42, it changes the orientations of residues Lys16, Thr17, Cys18 and Phe28 of Cdc42 to weaken the interactions between Cdc42 and GDP to release GDP. This study first elucidates the dissociation mechanism of GDP from Cdc42 via DOCK9 and identifies the essential residues of Cdc42 in this process. These simulation results are consistent with the recent findings of biochemical and amino acid mutational studies, and the observations are beneficial to understand the activation mechanism of Cdc42 and to provide insights for designing compounds targeting on Cdc42 related cancer metastasis.  相似文献   

9.
As a critical guanine nucleotide exchange factor (GEF) regulating neurite outgrowth, Trio coordinates multiple processes of cytoskeletal dynamics through activating Rac1, Cdc42 and RhoA small GTPases by two GEF domains, but the in vivo roles of these GEF domains and corresponding downstream effectors have not been determined yet. We established multiple lines of knockout mice and assessed the respective roles of Trio GEF domains and Rac1 in axon outgrowth. Knockout of total Trio in cerebellar granule neurons (CGNs) led to an impaired F-actin rearrangement of growth cone and hence a retarded neurite outgrowth. Such a retardation was reproduced by inhibition of GEF1 domain or knockdown of Cdc42 and restored apparently by introduction of active Cdc42. As Rac1 deficiency did not affect the neurite outgrowth of CGNs, we suggested that Trio GEF1-mediated Cdc42 activation was required for neurite outgrowth. We established a GEF2-knockout line with deletion of all Trio isoforms except a cerebella-specific Trio8, a short isoform of Trio without GEF2 domain, and used this line as a GEF2-deficient animal model. The GEF2-deficient CGNs had a normal neurite outgrowth but abolished Netrin-1-promoted growth, without affecting Netrin-1 induced Rac1 activation. We thus suggested that Trio GEF1-mediated Cdc42 activation rather than Rac1 activation drives the F-actin dynamics necessary for neurite outgrowth, while GEF2 functions in Netrin-1-promoted neurite elongation. Our results delineated the distinct roles of Trio GEF domains in neurite outgrowth, which is instructive to understand the pathogenesis of clinical Trio-related neurodevelopmental disorders.  相似文献   

10.
The Rho-type GTPase Cdc42p is required for cell polarization and bud emergence in Saccharomyces cerevisiae. To identify genes whose functions are linked to CDC42, we screened for (i) multicopy suppressors of a Ts- cdc42 mutant, (ii) mutants that require multiple copies of CDC42 for survival, and (iii) mutations that display synthetic lethality with a partial-loss-of-function allele of CDC24, which encodes a guanine nucleotide exchange factor for Cdc42p. In all three screens, we identified a new gene, BEM4. Cells from which BEM4 was deleted were inviable at 37 degrees C. These cells became unbudded, large, and round, consistent with a model in which Bem4p acts together with Cdc42p in polarity establishment and bud emergence. In some strains, the ability of CDC42 to serve as a multicopy suppressor of the Ts- growth defect of deltabem4 cells required co-overexpression of Rho1p, which is an essential Rho-type GTPase necessary for cell wall integrity. This finding suggests that Bem4p also affects Rho1p function. Bem4p displayed two-hybrid interactions with Cdc42p, Rho1p, and two of the three other known yeast Rho-type GTPases, suggesting that Bem4p can interact with multiple Rho-type GTPases. Models for the role of Bem4p include that it serves as a chaperone or modulates the interaction of these GTPases with one or more of their targets or regulators.  相似文献   

11.
Site-specific activation of the Rho-type GTPase Cdc42p is critical for the establishment of cell polarity. Here we investigated the role and regulation of the GTPase-activating enzymes (GAPs) Bem2p and Bem3p for Cdc42p activation and actin polarization at bud emergence in Saccharomyces cerevisiae. Bem2p and Bem3p are localized throughout the cytoplasm and the cell cortex in unbudded G1 cells, but accumulate at sites of polarization after bud emergence. Inactivation of Bem2p results in hyperactivation of Cdc42p and polarization toward multiple sites. Bem2p and Bem3p are hyperphosphorylated at bud emergence most likely by the Cdc28p-Cln2p kinase. This phosphorylation appears to inhibit their GAP activity in vivo, as non-phosphorylatable Bem3p mutants are hyperactive and interfere with Cdc42p activation. Taken together, our results indicate that Bem2p and Bem3p may function as global inhibitors of Cdc42p activation during G1, and their inactivation by the Cdc28p/Cln kinase contributes to site-specific activation of Cdc42p at bud emergence.  相似文献   

12.
BACKGROUND: Cloned-out of library-2 (Cool-2)/PAK-interactive exchange factor (alpha-Pix) was identified through its ability to bind the Cdc42/Rac target p21-activated kinase (PAK) and has been implicated in certain forms of X-linked mental retardation as well as in growth factor- and chemoattractant-coupled signaling pathways. We recently found that the dimeric form of Cool-2 is a specific guanine nucleotide exchange factor (GEF) for Rac, whereas monomeric Cool-2 is a GEF for Cdc42 as well as Rac. However, unlike many GEFs, Cool-2 binds to activated forms of Cdc42 and Rac. Thus, we have investigated the functional consequences of these interactions. RESULTS: We show that the binding of activated Cdc42 to the Cool-2 dimer markedly enhances its ability to associate with GDP bound Rac1, resulting in a significant activation of Rac-GEF activity. While the Rac-specific GEF activity of Cool-2 is mediated through the Dbl homology (DH) domain from one monomer and the Pleckstrin homology domain from the other, activated Cdc42 interacts with the DH domain, most likely opposite the DH domain binding site for GDP bound Rac. Activated Rac also binds to Cool-2; however, it strongly inhibits the GEF activity of dimeric Cool-2. CONCLUSIONS: We provide evidence for novel mechanisms of allosteric regulation of the Rac-GEF activity of the Cool-2 dimer, involving stimulatory effects by Cdc42 and feedback inhibition by Rac. These findings demonstrate that by serving as a target for GTP bound Cdc42 and a GEF for Rac, Cool-2 mediates a GTPase cascade where the activation of Cdc42 is translated into the activation of Rac.  相似文献   

13.
14.
Beta1Pix (PAK-interacting exchange factor) is a recently identified guanine nucleotide exchange factor (GEF) for the Rho family small G protein Cdc42/Rac. On stimulation with extracellular signals, GEFs induce the exchange of guanosine diphosphate to guanosine triphosphate, resulting in the activation of the small guanosine 5C-triphosphatases. This activation enables the signal to propagate to downstream effectors. Herein, we show that G(salpha) stimulation by cholera toxin increased Cdc42 activation by endothelin-1 (ET-1), whereas pertussis toxin had no effect. H-89, a protein kinase A (PKA) inhibitor, strongly inhibited Cdc42 activation by ET-1. Moreover, the overexpression of beta1Pix enhanced ET-1-induced Cdc42 activation. The essential role of beta1Pix in ET-1-induced Cdc42 activation was evidenced by the blocking of Cdc42 activation in cells expressing beta1Pix mutant lacking the ability to bind PAK (beta1Pix SH3m[W43K]) or mutant lacking GEF activity (beta1PixdeltaDH). The overexpression of mutant lacking the pleckstrin homology domain beta1PixdeltaPH, which is unable to bind phospholipids, had no effect on Cdc42 activation. These results demonstrate that beta1Pix, along with PKA, plays a crucial role in the regulation of Cdc42 activation by ET-1.  相似文献   

15.
BACKGROUND: Mammalian Scribble (Scrib) plays a conserved role in polarization of epithelial and neuronal cells. Polarization is essential for migration of a variety of cell types; however, the function of Scrib in this context remains unclear. Scrib has been shown to interact with betaPIX, a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42. Cdc42 controls cell polarity from yeast to mammals during asymmetric cell division and epithelial cell polarization, as well as during cell migration. Cdc42 is, in particular, required for polarization and orientation of astrocytes in a scratch-induced polarized migration assay. Using this assay, we characterized Scrib function during polarized cell migration. RESULTS: Depletion of Scrib by siRNA or expression of dominant-negative constructs inhibits astrocyte polarization. Like Cdc42, Scrib controls protrusion formation, cytoskeleton polarization, and centrosome and Golgi reorientation. Scrib interacts and colocalizes with betaPIX at the front edge of polarizing astrocytes. Perturbation of Scrib localization or of Scrib-betaPIX interaction inhibits betaPIX polarized recruitment. We further show that betaPIX is required for astrocyte polarization and that both the Scrib-binding motif and the GEF activity of betaPIX are essential for its function. Scrib and betaPIX control Cdc42 activation and localization during astrocyte polarization. Thereby, Scrib regulates Cdc42-dependent APC and Dlg1 recruitment to the leading edge to promote cell orientation. CONCLUSION: We conclude that Scrib plays a key role in the establishment of cell polarity during migration. By interacting with betaPIX, Scrib controls localization and activation of the small GTPase Cdc42 and regulates Cdc42-dependent polarization pathways.  相似文献   

16.
The cortical recruitment and accumulation of the small GTPase Cdc42 are crucial steps in the establishment of polarity, but this process remains obscure. Cdc24 is an upstream regulator of budding yeast Cdc42 that accelerates the exchange of GDP for GTP in Cdc42 via its Dbl homology (DH) domain. Here, we isolated five novel temperature-sensitive (ts) cdc24 mutants, the green fluorescent protein (GFP)-fused proteins of which lose their polarized localization at the nonpermissive temperature. All amino acid substitutions in the mutants were mapped to the NH2-terminal region of Cdc24, including the calponin homology (CH) domain. These Cdc24-ts mutant proteins did not interact with Bem1 at the COOH-terminal PB1 domain, suggesting a lack of exposure of the PB1 domain in the mutant proteins. The cdc24-ts mutants were also defective in polarization in the absence of Bem1. It was previously reported that a fusion protein containing Cdc24 and the p21-activated kinase (PAK)-like kinase Cla4 could bypass the requirement for Bem1 in polarity cue-independent budding (i.e., symmetry breaking). Cdc24-ts-Cla4 fusion proteins also showed ts localization at the polarity site. We propose that the NH2-terminal region unmasks the DH and PB1 domains, leading to the activation of Cdc42 and interaction with Bem1, respectively, to initiate cell polarization.  相似文献   

17.
The mechanisms that control cell growth during the cell cycle are poorly understood. In budding yeast, cyclin dependent kinase 1 (Cdk1) triggers polarization of the actin cytoskeleton and bud emergence in late G1 through activation of the Cdc42 GTPase. However, Cdk1 is not thought to be required for subsequent growth of the bud. Here, we show that Cdk1 has an unexpected role in controlling bud growth after bud emergence. Moreover, we show that G1 cyclin-Cdk1 complexes specifically phosphorylate multiple proteins associated with Cdc24, the guanine nucleotide-exchange factor (GEF) that activates the Cdc42 GTPase. A mutant form of a Cdc24-associated protein that fails to undergo Cdk1-dependent phosphorylation causes defects in bud growth. These results provide a direct link between Cdk1 activity and the control of polarized cell growth.  相似文献   

18.
Second-phase insulin release requires the sustained mobilization of insulin granules from internal storage pools to the cell surface for fusion with the plasma membrane. However, the detailed mechanisms underlying this process remain largely unknown. GTP-loading of the small GTPase Cdc42 is the first glucose-specific activation step in the process, although how glucose triggers Cdc42 activation is entirely unknown. In a directed candidate screen for guanine nucleotide exchange factors (GEFs), which directly activate small GTPases, Cool-1/βPix was identified in pancreatic islet beta cells. In support of its role as the beta cell Cdc42 GEF, βPix coimmunoprecipitated with Cdc42 in human islets and MIN6 beta cells in a glucose-dependent manner, peaking just prior to Cdc42 activation. Furthermore, RNAi-mediated βPix reduction by 50% corresponded to full ablation of glucose-induced Cdc42 activation and significant attenuation of basal and glucose-stimulated insulin secretion. Of the two Cdc42 guanine nucleotide dissociation inhibitor (GDI) proteins identified in beta cells, βPix competed selectively with caveolin-1 (Cav-1) but not RhoGDI in coimmunoprecipitation and GST-Cdc42-GDP interaction assays. However, a phospho-deficient Cav-1-Y14F mutant failed to compete with βPix; Cav-1(Tyr14) is an established phosphorylation site for Src kinase. Taken together, these data support a new model, wherein glucose stimulates Cav-1 and induces its dissociation from Cdc42, possibly via Src kinase activation to phosphorylate Cav-1(Tyr14), to promote Cdc42-βPix binding and Cdc42 activation, and to trigger downstream signaling and ultimately sustain insulin release.  相似文献   

19.
Schizosaccharomyces pombe cdc42(+) regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1(+) increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1(+) causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1(+) deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1delta scd1delta is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1(+) or scd1(+) causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.  相似文献   

20.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号