首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
线粒体是一种拥有自身遗传体系的半自主细胞器,它的遗传物质线粒体DNA(mitochondrial DNA,mt DNA)随着人类的迁移、隔离、进化而形成了广泛的线粒体基因组多态性,同一祖先所具有的一些相同mt DNA SNP位点的集合称为线粒体单体型.不同的线粒体单体型会在一定程度上影响线粒体功能,从而影响整个细胞的生长,并在某些情况下导致一些个体的病变,例如Leber遗传性视神经病变、母系遗传性耳聋、Ⅱ型糖尿病、帕金森以及各种癌症等复杂疾病.本文列举总结了几种线粒体相关疾病及其与线粒体单体型如A、B、D、F、G、H、J、K、M、N、T、U、Y及一些有特点的多态位点如G11778A、A1555G、T3394C、G10398A等的相关性.  相似文献   

2.
To date, more than 100 point mutations and several hundreds of structural rearrangements of mitochondrial DNA (mtDNA) are known too be connected with characteristic neuromuscular and other mitochondrial syndromes varying form those causing death at the neonatal stage to diseases with late ages of onset. The immediate cause of mitochondrial disorders is a defective oxidative phosphorylation. Wide phenotypic variation and the heteroplasmy phenomenon, which some authors include in mutation load, are characteristic of human mitochondrial diseases. As the numbers of cases identified and pedigrees described increase, data on the genotype–phenotype interaction and the structure and frequency of pathogenic and conditionally pathogenic mtDNA mutations in human populations are rapidly accumulated. The data on the genetics and epidemiology of mitochondrial diseases are not only important for differential diagnosis and genetic counseling. Since both neutral and mildly pathogenic mutations of mtDNA are progressively accumulated in maternal phyletic lines, molecular analysis of these mutations permits not only reconstruction of the genealogical tree of modern humans, but also estimation of the role that these mutations play in natural selection.  相似文献   

3.
线粒体是普遍存在于真核细胞中的一类细胞器.每个线粒体含有多个拷贝的闭合环状双链DNA. 人类线粒体DNA (mitochondrial DNA, mtDNA)共编码22种线粒体tRNA(mitochondrial tRNA,mt tRNA), 2种rRNA 及13种多肽.mt tRNA独特的结构特点决定了它们与具有典型三叶草结构的细胞质 tRNA不同.编码mt tRNA的基因突变频率较高,这可能是引起线粒体功能障碍的主要原因之一. 同时 ,这与很多病理现象相关.目前发现,大量与mt tRNA生物代谢和功能相关的核因子包括加工内切酶、 tRNA修饰酶和氨酰-tRNA合成酶.这些核因子的异常导致了疾病相关的tRNA致病突变.由此可见mt tRNA功能对于线粒体活性的重要性.  相似文献   

4.
Mitochondrial dynamics   总被引:7,自引:2,他引:5  
  相似文献   

5.
6.
Sirtuins have emerged as important proteins in aging, stress resistance and metabolic regulation. Three sirtuins, SIRT3, 4 and 5, are located within the mitochondrial matrix. SIRT3 and SIRT5 are NAD+-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins and yield 2′-O-acetyl-ADP-ribose and nicotinamide. SIRT4 can transfer the ADP-ribose group from NAD+ onto acceptor proteins. Recent findings reveal that a large fraction of mitochondrial proteins are acetylated and that mitochondrial protein acetylation is modulated by nutritional status. This and the identification of targets for SIRT3, 4 and 5 support the model that mitochondrial sirtuins are metabolic sensors that modulate the activity of metabolic enzymes via protein deacetylation or mono-ADP-ribosylation. Here, we review and discuss recent progress in the study of mitochondrial sirtuins and their targets.  相似文献   

7.
A novel ferritin type specifically targeted to mitochondria has been recently found in human and mouse. It is structurally and functionally similar to the cytosolic ferritins, well-characterized molecules found in most living systems which are designed to store and detoxify cellular iron. Cytosolic ferritins in mammals are ubiquitous while mitochondrial ferritin expression is restricted mainly to the testis, neuronal cells and islets of Langherans. In addition, it is abundant in the iron-loaded mitochondria of erythroblasts of patients with sideroblastic anaemia. The characterization of recombinant and transfected mitochondrial ferritin indicated that this protein has a role in protecting mitochondria from iron-induced damage. These data suggest that it is an interesting tool to study the iron metabolism in this organelle. In addition, it may be useful for the diagnosis of myelodysplastic syndromes and in protecting mitochondria from the toxic effects of excess iron.  相似文献   

8.
Mitochondrial medicine   总被引:4,自引:0,他引:4  
After reviewing the history of mitochondrial diseases, I follow a genetic classification to discuss new developments and old conundrums. In the field of mitochondrial DNA (mtDNA) mutations, I argue that we are not yet scraping the bottom of the barrel because: (i) new mtDNA mutations are still being discovered, especially in protein-coding genes; (ii) the pathogenicity of homoplasmic mutations is being revisited; (iii) some genetic dogmas are chipped but not broken; (iv) mtDNA haplotypes are gaining interest in human pathology; (v) pathogenesis is still largely enigmatic. In the field of nuclear DNA (nDNA) mutations, there has been good progress in our understanding of disorders due to faulty intergenomic communication. Of the genes responsible for multiple deletions and depletion of mtDNA, mutations in POLG have been associated with a great variety of clinical phenotypes in humans and to precocious aging in mice. Novel pathogenetic mechanisms include alterations in the lipid milieu of the inner mitochondrial membrane and mutations in genes controlling mitochondrial motility, fission, and fusion.  相似文献   

9.
10.
11.
1.  A series of CS revertants has been selected from various strains (both + and ) carrying a CR mitochondrial mutation at the RIB1 locus. The properties of mitochondrial recombination exhibited by these CS revertants in various crosses, have been examined systematically. The allele of the CS revertants has been defined in crosses with + and tester strains using two criteria: the polarity of recombination and a new criterium called relative output coefficient. We found that mutations of appear frequently associated with the mutations at the RIB1 locus selected from strains but not with those selected from + strains. A new allelic form of (n) which had not been found amongst wild type yeast strains is characterised. Similarly n mutation was found frequently associated with CR mutants at the RIB1 locus selected from CS strains but not with those selected from + CS strains. The n mutants, and the + and strains, explain the groups of polarity previously observed by Coen et al. (1970).
2.  Main features of mitochondrial crosses with n strains (+×n, ×n and n×n) are analysed. Recombination is possible between the different mitochondrial genetic markers. No high polarity of recombination is observed and the frequency of recombinants are similar to those found in homosexual crosses (+×+ and ×). A striking property, observed for the first time, exists in crosses between + +×n CS strains and some CREO mutants: the CREO are unable to integrate by recombination their CR allele into the + mit-DNA of CS strains while being capable of integrating it into + CS or CS genomes.
3.  It is proposed that the locus is the site of initiation of non reciprocal recombination events, the +/ pairing specifically initiates the non-reciprocal act while +/n or /n pairings do not.
4.  The molecular nature of the n mutation and its bearing on the structure of the locus are discussed. It is suggested that n mutations correspond to macrolesions (probably deletions) of a segment of the mit-DNA covering the and RIB1 loci. If n is a partial deletion of the sequence the + could be an additionnal deletion of the n sequence.
5.  The occurrence of spontaneous CR and ER mitochondrial mutations has been analysed by the Luria and Delbrück fluctuation test in and n isonuclear strains. Results of these tests indicate that an intracellular selection of resistant copies preexisting the action of the antibiotic occurs.
  相似文献   

12.
Mitochondria are cellular organelles that perform pivotal functions essential for ATP production, homeostasis, and metabolism. Moreover, mitochondria are integral to a variety of cell death and survival pathways. These roles identify mitochondria as a potential target for drugs to treat metabolic and hyperproliferative diseases. Differences in the redox state of pathogenic versus non-pathogenic cells may be exploited to achieve selective anti-proliferative and cytotoxic activity against target cell populations. Pro-oxidant drugs, such as Trisenoxtrade mark and Elesclomoltrade mark, are demonstrating clinical utility in the treatment of cancer. Results obtained with Bz-423 in mice demonstrate the potential for mitochondria-targeted drugs to control disorders of immune function. Research associating an elevated oxidant state with mitochondrial damage, degenerative disease, and aging dictates the need for a better understanding of when and how pharmacological manipulation of mitochondrial function provides most therapeutic benefit.  相似文献   

13.
14.
Summary Cytoplasmic petite mutants of Saccharomyces cerevisiae carrying the gene conferring the resistance to chloramphenicol on one hand and the gene conferring the resistance to erythromycin on the other, have been crossed with each other. The two types of petites differed in the buoyant densities of their mitochondrial DNA. A novel type of evidence has been adduced, that the two genes are indeed located on mitochondrial DNA. Diploid petite recombinants were found, carrying both genes and containing not a mixture of the two parental DNAs but a new species of mitochondrial DNA of intermediate buoyant density. Recombination of mitochondrial genes involves therefore breakage and reunion of DNA molecules. New suppressiveness, different from the two parental ones, can result from the recombination of mitochondrial DNA. Recombination between petite mutants implies that the mitochondrial recombination enzymes have to be synthesized on cytosol ribosomes.  相似文献   

15.
Simple and effective demonstrations of the application and use of the female condom and other contraceptive devices.  相似文献   

16.
Since the end of the 1980s, key discoveries have been made which have significantly revived the scientific interest in a cell organelle, which has been studied continuously and with steady success for the last 100 years. It has become increasingly evident that mitochondrial dysfunction contributes to a variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Moreover, since the middle of the 1990s, mitochondria, the 'power house' of the cell, have also become accepted as the cell's 'arsenals' reflecting their increasingly acknowledged key role during apoptosis. Based on these recent developments in mitochondrial research, increased pharmacological and pharmaceutical efforts have lead to the emergence of 'Mitochondrial Medicine' as a whole new field of biomedical research. Targeting of biologically active molecules to mitochondria in living cells will open up avenues for manipulating mitochondrial functions, which may result in the selective protection, repair or eradication of cells. This review gives a brief synopsis over current strategies of mitochondrial targeting and their possible therapeutic applications.  相似文献   

17.
Many functions of mitochondrial GSH are significantly different from those of cytosolic GSH. This review considers the peculiarity of functions of mitochondrial GSH and enzymes of its metabolism, especially glutathione peroxidase 4, glutaredoxin 2, and kappa-glutathione transferase.  相似文献   

18.
线粒体LncRNA     
长链非编码RNA(long noncoding RNAs,lncRNAs)是一类长度大于200个核苷酸的非蛋白质编码RNA。绝大多数lncRNA来源于核基因组。但近年研究发现,一些lncRNA是由线粒体基因组编码、转录而成,或定位于线粒体。本文将从线粒体lncRNA的发现与主要种类、线粒体lncRNA的加工和结构,以及它们的功能和应用等几个方面,对线粒体lncRNA进行阐述。线粒体lncRNA可能成为心血管疾病或肿瘤诊断的生物标志物,或在调控线粒体基因表达等方面发挥重要功能。  相似文献   

19.
Mitochondrial ribosomes   总被引:17,自引:0,他引:17  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号