首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recognition of substrates by the protein kinase glycogen synthase kinase 3 (GSK-3) usually requires prior phosphorylation of the substrate. Using a peptide based on the glycogen synthase sequence PRPAS(3a)VPPS (3b)PSLS(3c)RHSS(4)PHQS(5)EDEEEP (where the numbers in parentheses denote sites of phosphorylation), we showed previously that phosphorylation of site 5 by casein kinase II was necessary for GSK-3 to phosphorylate the peptide at sites 3a, 3b, 3c, and 4 (Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W., and Roach, P. J. (1987) J. Biol. Chem. 262, 14042-14048). In the present study, variant peptides were synthesized in which sites 3a, 3b, 3c, and 4 were individually replaced by Ala residues (denoted Ala-3c, etc.). All of the variant peptides were substrates for casein kinase II. The peptide Ala-4,Ser(P)-5 was not a substrate for GSK-3 confirming the minimal recognition sequence for the protein kinase as -SXXXS(P)-. The peptides Ala-3c,Ser(P)-5, Ala-3b,Ser(P)-5, and Ala-3a,Ser(P)-5, however, were all good substrates for GSK-3 with apparent Km values in the range 3-6 microns, comparable with that of the parent peptide. GSK-3 could introduce 1, 2, and 3 phosphates, respectively, into these substrates, always COOH-terminal to the substituted Ala residue. Ala-4,Ser(P)-5 and Ala-3c,Ser(P)-4,Ser(P)-5 were competitive inhibitors for phosphorylation of the parent peptide, with Ki values of 2 and 5 microns, respectively. The data suggest (i) that GSK-3 recognizes serines in the motif -SXXXS(P)-, and (ii) that multiple phosphorylation of the peptide substrate has an obligate order, with the sequential formation of new recognition sequences.  相似文献   

2.
The phosphorylation of rabbit skeletal muscle glycogen synthase by casein kinase I is markedly enhanced if the enzyme has previously been phosphorylated by cAMP-dependent protein kinase. The presence of phosphate in the primary cAMP-dependent protein kinase sites, sites 1a, 1b, and 2 (serine 7), increases the activity of casein kinase I toward residues in the vicinity of these sites. This synergistic phosphorylation correlates with potent inactivation of the glycogen synthase. Analysis of the NH2 terminus of the enzyme subunit indicated that phosphorylation at serine 7 caused serine 10 to become a preferred casein kinase I site and that phosphoserine can be an important recognition determinant for casein kinase I. This finding can also explain how epinephrine stimulation of skeletal muscle provokes significant increases in the phosphorylation state of serine residues, in particular serine 10, not recognized by cAMP-dependent protein kinase.  相似文献   

3.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

4.
Several polycations were tested for their abilities to inhibit the activity of glycogen synthase kinase 3 (GSK-3). L-Polylysine was the most powerful inhibitor of GSK-3 with half-maximal inhibition of glycogen synthase phosphorylation occurring at approx. 100 nM. D-Polylysine and histone H1 were also inhibitory, but the concentration dependence was complex, and DL-polylysine was the least effective inhibitor. Spermine caused about 50% inhibition of GSK-3 at 0.7 mM and 70% inhibition at 4 mM. Inhibition of GSK-3 by L-polylysine could be blocked or reversed by heparin. A heat-stable polycation antagonist isolated from swine kidney cortex also blocked the inhibitory effect of L-polylysine on GSK-3 and blocked histone H1 stimulation of protein phosphatase 2A activity. Under the conditions tested, L-polylysine also inhibited GSK-3 catalyzed phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase and a 63 kDa brain protein, but only slightly inhibited phosphorylation of inhibitor 2 or proteolytic fragments of glycogen synthase that contain site 3 (a + b + c). L-Polylysine at a concentration (200 nM) that caused nearly complete inhibition of GSK-3 stimulated casein kinase I and casein kinase II, but had virtually no effect on the catalytic subunit of cAMP-dependent protein kinase. These results suggest that polycations can be useful in controlling GSK-3 activity. Polycations have the potential to decrease the phosphorylation state of glycogen synthase at site 3, both by inhibiting GKS-3 as shown in this study and by stimulating the phosphatase reaction as shown previously (Pelech, S. and Cohen, P. (1985) Eur. J. Biochem. 148, 245-251).  相似文献   

5.
Multifunctional protein kinase (MFPK) phosphorylates ATP-citrate lyase on peptide B on two sites, BT and BS, on threonine and serine, respectively, inhibitor 2 on a threonyl residue, and glycogen synthase at sites 2 and 3. The phosphorylation sites BT and BS of ATP-citrate lyase are dependent on prior phosphorylation at site A whereas site A phosphorylation is decreased by prior phosphorylation at sites BT and BS. To study the MFPK recognition sites and the site-site interactions, the amino acid sequences of ATP-citrate lyase peptide B and inhibitor 2 were determined and compared to each other and to glycogen synthase sites 3-5. The sequence of the tryptic peptide containing the two phosphorylation sites of peptide B is -Phe-Leu-Leu-Asn-Ala-Ser-Gly-Ser-Thr-Ser-Thr(P)-Pro-Ala-Pro-Ser(P)-Arg-, and the sequence of the MFPK phosphorylation site of inhibitor 2 is -Ile-Asp-Glu-Pro-Ser-Thr(P)-Pro-Tyr-. This inhibitor 2 site is identical with the site phosphorylated by glycogen synthase kinase 3/FA. These results suggest that at least some of the sites phosphorylated by MFPK (BT of ATP-citrate lyase, Thr 72 of inhibitor 2, and sites 3b and 4 of glycogen synthase) contain a Ser/Thr flanked by a carboxyl-terminal proline. However, as MFPK did not phosphorylate a series of peptides containing the -X-Thr/Ser-Pro-X- sequence, this minimum consensus sequence is not sufficient for phosphorylation by MFPK.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Prior phosphorylation of its substrate has been shown to be important for substrate recognition by the protein kinase glycogen synthase kinase-3 (GSK-3). Phosphorylation of glycogen synthase by GSK-3 is known to be enhanced by the previous action of casein kinase II and the sequence -SXXXS(P)- was proposed as the minimal recognition determinant for GSK-3. The glycogen binding subunit of type 1 phosphoprotein phosphatase has been shown to be phosphorylated by cyclic AMP-dependent protein kinase at serine-13 in the sequence KPGFS(5)PQPS(9)RRGS(13)ESSEEVYV (F.B. Caudwell, A. Hiraga, and P. Cohen (1986) FEBS Lett. 194, 85-89). Inspection of the sequence revealed potential GSK-3 sites at residues 5 and 9. Using a synthetic peptide with the above sequence, we found that phosphorylation of serine-13 by cyclic AMP-dependent protein kinase permitted the recognition of serine-9 and serine-5 by GSK-3. The work provides another example of a substrate for GSK-3 and demonstrates that the action of GSK-3 is linked to the presence of phosphate in the substrate and not the action of any particular protein kinase. In the course of the analyses, a novel feature of trypsin cleavage of phosphopeptides was noted. In the sequence -SRRGS(P)- trypsin acted uniquely after the first arginine whereas in the sequence -S(P)RRGS(P)- it cleaved randomly at either arginine residue. The fact that GSK-3 could phosphorylate a peptide derived from a phosphatase subunit also raises the possibility that GSK-3 might be involved in controlling glycogen-associated type 1 phosphatase and, more generally, in mediating cyclic AMP control of protein phosphorylation in cells.  相似文献   

7.
Role of protein kinase C in the regulation of rat liver glycogen synthase   总被引:1,自引:0,他引:1  
Rat liver glycogen synthase was phosphorylated by purified protein kinase C in a Ca2+- and phospholipid-dependent fashion to 1-1.4 mol PO4/subunit. Analysis of the 32P-labeled tryptic peptides derived from the phosphorylated synthase by isoelectric focusing and two-dimensional peptide mapping revealed the presence of a major radioactive peptide. The sites in liver synthase phosphorylated by protein kinase C appears to be different from those phosphorylated by other kinases. Prior phosphorylation of the synthase by protein kinase C has no significant effect on the subsequent phosphorylation by glycogen synthase (casein) kinase-1 or kinase Fa, but prevents the synthase from further phosphorylation by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, phosphorylase kinase, or casein kinase-2. Additive phosphorylation of liver glycogen synthase can be observed by the combination of protein kinase C with the former set of kinases but not with the latter. Phosphorylation of liver synthase by protein kinase C alone did not cause an inactivation nor did the combination of this kinase with glycogen synthase (casein) kinase-1 or kinase Fa produce a synergistic effect on the inactivation of the synthase. Based on these findings we conclude that the phorbol ester-induced inactivation of glycogen synthase previously observed in hepatocytes cannot be accounted for entirely by the activation of protein kinase C.  相似文献   

8.
A method is described which separates the various phosphorylation sites in glycogen synthase based on reverse phase high-performance liquid chromatography (HPLC) of tryptic 32P-peptides. Using this method we studied the phosphorylation site specificities of the kinases which act on glycogen synthase. The cAMP-dependent protein kinase phosphorylated sites 1a, 1b, and 2, whereas casein kinase II phosphorylated only site 5. Two calcium, calmodulin-dependent kinases, phosphorylase kinase and liver calmodulin-dependent synthase kinase, both phosphorylated site 2, and the latter enzyme also phosphorylated site 1b. A cAMP-independent kinase (kinase 4) purified from liver also specifically phosphorylated site 2. Synthase kinase 3 catalyzed the phosphorylation of only site 3. This HPLC method was also used to establish that all of these sites were subject to phosphorylation in vivo.  相似文献   

9.
The substrate specificity of protein kinase C has been examined using a series of synthetic peptide analogs of glycogen synthase, ribosomal protein S6, and the epidermal growth factor receptor. The glycogen synthase analog peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala10 was phosphorylated at Ser7 with a Km of 40.3 microM. Peptide phosphorylation was strongly dependent on Arg4. When lysine was substituted for Arg4 the Km was increased approximately 20-fold. Addition of basic residues on either the NH2-terminal or COOH-terminal side of the phosphorylation site of the glycogen synthase peptide improved the kinetics of peptide phosphorylation. The analog Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys was phosphorylated with a Km of 4.1 microM. Substitution of Ser7 with threonine increased the apparent Km to 151 microM. The truncated peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val8 was phosphorylated with similar kinetic constants to the parent peptide, however, deletion of Val8 increased the apparent Km to 761 microM. The ribosomal peptide S6-(229-239) was phosphorylated with a Km of approximately 0.5 microM predominantly on Ser236 and is one of the most potent synthetic peptide substrates reported for a protein kinase. The apparent Km for S6 peptide phosphorylation was increased by either deletion of the NH2-terminal 3 residues Ala229-Arg-231 or by substitution of Arg238 on the COOH-terminal side of the phosphorylation site with alanine. This analog peptide, [Ala238]S6-(229-239) was phosphorylated with an approximate 6-fold reduction in Vmax and a switch in the preferred site of phosphorylation from Ser236 to Ser235. These results support the concept that basic residues on both sides of the phosphorylation site can have an important influence on the kinetics of phosphorylation and site specificity of protein kinase C.  相似文献   

10.
Casein kinase I (CK-I) from skeletal muscle was stimulated 2-3 fold by 0.25-1 mM spermine. The polyamine also stimulated the phosphorylation of glycogen synthase by another casein kinase purified from aortic smooth muscle [DiSalvo et al. (1986) Biochem. Biophys. Res. Commun. 136, 789-796]. Phosphopeptide maps and phosphoamino acid analysis of [32P]glycogen synthase revealed that smooth muscle casein kinase phosphorylated glycogen synthase in the same sites that undergo phosphorylation by CK-I. The stimulatory effect of spermine on glycogen synthase kinase activity of CK-I was accompanied by increased phosphorylation of all peptide sites of glycogen synthase. Increased phosphorylation was observed in both seryl and threonyl residues. Higher concentrations (4 mM) of spermine inhibited CK-I activity by about 50%. These results indicate that aortic smooth muscle casein kinase is a CK-I enzyme and that skeletal and smooth muscle CK-I can be modulated by spermine.  相似文献   

11.
Purified rabbit liver glycogen synthase was found to be a substrate for six different protein kinases: (i) cyclic AMP-dependent protein kinase, (ii) two Ca2+-stimulated protein kinases, phosphorylase kinase (from muscle) and a calmodulin-dependent glycogen synthase kinase, and (iii) three members of a Ca2+ and cyclic nucleotide independent class, PC0.7, FA/GSK-3, and casein kinase-1. Greatest inactivation accompanied phosphorylation by cyclic AMP-dependent protein kinase (to 0.5-0.7 phosphate/subunit, +/- glucose-6-P activity ratio reduced from approximately 1 to 0.6) or FA/GSK-3 (to approximately 1 phosphate/subunit, activity ratio, 0.46). Phosphorylation by the combination FA/GSK-3 plus PC0.7 was synergistic, and more extensive inactivation was achieved. The phosphorylation reactions just described caused significant reductions in the Vmax of the glycogen synthase with little effect on the S0.5 (substrate concentration corresponding to Vmax/2). Phosphorylase kinase achieved a lesser inactivation, to an activity ratio of 0.75 at 0.6 phosphate/subunit. PC0.7 acting alone, casein kinase-1, and the calmodulin-dependent protein kinase did not cause inactivation of liver glycogen synthase with the conditions used. Analysis of CNBr fragments of phosphorylated glycogen synthase indicated that the phosphate was distributed primarily between two polypeptides, with apparent Mr = 12,300 (CB-I) and 16,000-17,000 (CB-II). PC0.7 and casein kinase-1 displayed a decided specificity for CB-II, and the calmodulin-dependent protein kinase was specific for CB-I. The other protein kinases were able, to some extent, to introduce phosphate into both CB-I and CB-II. Studies using limited proteolysis indicated that CB-II was located at a terminal region of the subunit. CB-I contains a minimum of one phosphorylation site and CB-II at least three sites. Liver glycogen synthase is therefore potentially subject to the same type of multisite regulation as skeletal muscle glycogen synthase although the muscle and liver enzymes display significant differences in both structural and kinetic properties.  相似文献   

12.
Glycogen synthase kinase-5 (casein kinase-II) phosphorylates glycogen synthase on a serine termed site 5. This residue is just C-terminal to the 3 serines phosphorylated by glycogen synthase kinase-3, which are critical for the hormonal regulation of glycogen synthase in vivo. Although phosphorylation of site 5 does not affect the catalytic activity, it is demonstrated that this modification is a prerequisite for phosphorylation by glycogen synthase kinase-3. Since site 5 is almost fully phosphorylated in vivo under all conditions, the role of glycogen synthase kinase-5 would appear to be a novel one in forming the recognition site for another protein kinase  相似文献   

13.
The Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been found to phosphorylate and inactivate glycogen synthase. With muscle glycogen synthase as a substrate, the reaction was stimulated by Ca2+ and by phosphatidylserine. The tumor-promoting phorbol esters 12-O-tetradecanoyl phorbol 13-acetate was also a positive effector, half-maximal activation occurring at 6 nM. Phosphorylation of glycogen synthase, but not histone, was partially inhibited by glycogen, half-maximally at 0.05 mg/ml, probably via a substrate-directed mechanism. The rate of glycogen synthase phosphorylation was approximately half that for histone; the apparent Km for glycogen synthase was 0.25 mg/ml. Protein kinase C also phosphorylated casein, the preferred substrate among the individual caseins being alpha s1-casein. Glycogen synthase was phosphorylated to greater than 1 phosphate/subunit with an accompanying reduction in the -glucose-6-P/+glucose-6-P activity ratio from 0.9 to 0.5. Phosphate was introduced into serine residues in both the NH2-terminal and COOH-terminal CNBr fragments of the enzyme subunit. The two main tryptic phosphopeptides mapped in correspondence with the peptides that contain site 1a and site 2. Lesser phosphorylation in an unidentified peptide was also observed. Rabbit liver and muscle glycogen synthases were phosphorylated at similar rates by protein kinase C. The above results are compatible with a role for protein kinase C in the regulation of glycogen synthase as was suggested by a recent study of intact hepatocytes.  相似文献   

14.
A rapid method for purifying glycogen synthase a from rat liver was developed and the enzyme was tested as a substrate for nine different protein kinases, six of which were isolated from rat liver. The enzyme was phosphorylated on a 17-kDa CNBr fragment to approximately 1 phosphate/87-kDa subunit by phosphorylase b kinase from muscle or liver with a decrease in the activity ratio (-Glc-6-P/+Glc-6-P) from 0.95 to 0.6. Calmodulin-dependent glycogen synthase kinase from rabbit liver produced a similar phosphorylation pattern, but a smaller activity change. The catalytic subunit of beef heart cAMP-dependent protein kinase incorporated greater than 1 phosphate/subunit initially into a 17-kDa CNBr peptide and then into a 27-30-kDa CNBr peptide, with an activity ratio decrease to 0.5. Glycogen synthase kinases 3, 4, and 5 and casein kinase 1 were purified from rat liver. Glycogen synthase kinase 3 rapidly phosphorylated liver glycogen synthase to 1.5 phosphate/subunit with incorporation of phosphate into 3 CNBr peptides and a decrease in the activity ratio to 0.3. Glycogen synthase kinase 4 produced a pattern of phosphorylation and inactivation of liver synthase which was very similar to that caused by phosphorylase b kinase. Glycogen synthase kinase 5 incorporated 1 phosphate/subunit into a 24-kDa CNBr peptide, but did not alter the activity of the synthase. Casein kinase 1 phosphorylated and inactivated liver synthase with incorporation of phosphate into a 24-kDa CNBr peptide. This kinase and glycogen synthase kinase 4 were more active against muscle glycogen synthase. Calcium-phospholipid-dependent protein kinase from brain phosphorylated liver and muscle glycogen synthase on 17- and 27-kDa CNBr peptides, respectively. However, there was no change in the activity ratio of either enzyme. The following conclusions are drawn. 1) Liver glycogen synthase a is subject to multiple site phosphorylation. 2) Phosphorylation of some sites does not per se control activity of the enzyme under the assay conditions used. 3) Liver contains most, if not all, of the protein kinases active on glycogen synthase previously identified in skeletal muscle.  相似文献   

15.
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein stabilizes beta-catenin by the novel mechanism of binding to the negative regulator, glycogen synthase kinase 3 (GSK-3), and depleting cytoplasmic GSK-3 levels. The two domains of LANA required for interaction with GSK-3 were further characterized. Evidence for similarity between the C-terminal LANA interaction domain and the axin GSK-3 interaction domain was obtained using GSK-3 and LANA mutants. GSK-3(F291L), which does not interact with axin, also failed to bind to LANA, and a mutation in the axin homology domain of LANA, L1132P, destroyed binding to GSK-3. The N-terminal LANA interaction domain was found to mediate interaction by acting as a substrate for GSK-3. GSK-3(R96A), a priming pocket mutant, did not bind to LANA, suggesting that LANA was a primed GSK-3 substrate. Phosphorylation of endogenous LANA precipitated from primary effusion lymphoma cells was inhibited by the GSK-3 inhibitor LiCl. GST-LANA(1-340) was phosphorylated by GSK-3, and mitogen-activated protein kinase (MAPK) and casein kinase I functioned as priming kinases in vitro. Mutation of consensus GSK-3 sites revealed that sites between LANA amino acids 219 and 268 were important for GSK-3 phosphorylation. Immunoprecipitation assays revealed that loss of GSK-3 phosphorylation of this N-terminal domain correlated with loss of GSK-3 interaction. Although LANA-associated GSK-3 actively phosphorylated LANA, GSK-3 coprecipitated with LANA was unable to phosphorylate an exogenous peptide substrate. LANA sequestration of GSK-3 may explain the ability of KSHV-infected cells to tolerate increased levels of nuclear GSK-3.  相似文献   

16.
Beta-catenin, a member of the Armadillo repeat protein family, binds directly to the cytoplasmic domain of E-cadherin, linking it via alpha-catenin to the actin cytoskeleton. A 30-amino acid region within the cytoplasmic domain of E-cadherin, conserved among all classical cadherins, has been shown to be essential for beta-catenin binding. This region harbors several putative casein kinase II (CKII) and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation sites and is highly phosphorylated. Here we report that in vitro this region is indeed phosphorylated by CKII and GSK-3beta, which results in an increased binding of beta-catenin to E-cadherin. Additionally, in mouse NIH3T3 fibroblasts expression of E-cadherin with mutations in putative CKII sites resulted in reduced cell-cell contacts. Thus, phosphorylation of the E-cadherin cytoplasmic domain by CKII and GSK-3beta appears to modulate the affinity between beta-catenin and E-cadherin, ultimately modifying the strength of cell-cell adhesion.  相似文献   

17.
A form of glycogen synthase kinase designated GSK-M3 was purified 4000-fold from rat skeletal muscle by phosphocellulose, Affi-Gel blue, Sephacryl S-300 and carboxymethyl-Sephadex column chromatography. Separation of GSK-M from the catalytic subunit of the cAMP-dependent protein kinase was facilitated by converting the catalytic subunit to the holoenzyme form by addition of the regulatory subunit prior to the gel filtration step. GSK-M had an apparent Mr 62,000 (based on gel filtration), an apparent Km of 11 microM for ATP, and an apparent Km of 4 microM for rat skeletal muscle glycogen synthase. The kinase had very little activity with 0.2 mM GTP as the phosphate donor. Kinase activity was not affected by the addition of cyclic nucleotides, EGTA, heparin, glucose 6-P, glycogen, or the heat-stable inhibitor of cAMP-dependent protein kinase. Phosphorylation of glycogen synthase from rat skeletal muscle by GSK-M reduced the activity ratio (activity in the absence of Glc-6-P/activity in the presence of Glc-6-P X 100) from 90 to 25% when approximately 1.2 mol of phosphate was incorporated per mole of glycogen synthase subunit. Phosphopeptide maps of glycogen synthase obtained after digestion with CNBr or trypsin showed that this kinase phosphorylated glycogen synthase in serine residues found in the peptides containing the sites known as site 2, which is located in the N-terminal CNBr peptide, and site 3, which is located in the C-terminal CNBr peptide of glycogen synthase. In addition to phosphorylating glycogen synthase, GSK-M phosphorylated inhibitor 2 and activated ATP-Mg-dependent protein phosphatase. Activation of the protein phosphatase by GSK-M was dependent on ATP and was virtually absent when ATP was replaced with GTP. GSK-M had minimal activity toward phosphorylase b, casein, phosvitin, and mixed histones. These data indicate that GSK-M, a major form of glycogen synthase kinase from rat skeletal muscle, differs from the known glycogen synthase kinases isolated from rabbit skeletal muscle.  相似文献   

18.
The ability of protein kinases to phosphorylate synthetic peptides corresponding to identified protein phosphorylation sites has previously been used to determine primary structural requirements and has helped define distinct "recognition sequences" for a variety of enzymes. Here, we have used an immobilized synthetic peptide derived from glycogen synthase to specifically purify two protein kinases. In the case of one, glycogen synthase kinase-3, the peptide is only a substrate if previously phosphorylated at a distinct site by another protein kinase, casein kinase-II. This prerequisite is reflected in the differential affinity of glycogen synthase kinase-3 for the immobilized phospho- and dephosphopeptide. This difference in binding has been exploited to effect purification of glycogen synthase kinase-3 as well as casein kinase-II. The general applicability of peptide-based affinity chromatography is discussed.  相似文献   

19.
Of 21 phosphorylation sites identified in PHF-tau 11 are on ser/thr-X motifs and are probably phosphorylated by non-proline-dependent protein kinases (non-PDPKs). The identities of the non-PDPKs and how they interact to hyperphosphorylate PHF-tau are still unclear. In a previous study we have shown that the rate of phosphorylation of human tau 39 by a PDPK (GSK-3) was increased several fold if tau were first prephosphorylated by non-PDPKs (Singh et al., FEBS Lett 358: 267-272, 1995). In this study we have examined how the specificity of a non-PDPK for different sites on human tau 39 is modulated when tau is prephosphorylated by other non-PDPKs (A-kinase, C-kinase, CK-1, CaM kinase II) as well as a PDPK (GSK-3). We found that the rate of phosphorylation of tau 39 by a non-PDPK can be stimulated if tau were first prephosphorylated by other non-PDPKs. Of the four non-PDPKs only CK-1 can phosphorylate sites (thr 231, ser 396, ser 404) known to be present in PHF-tau. Further, these sites were phosphorylated more rapidly and to a greater extent by CK-1 if tau 39 were first prephosphorylated by A-kinase, CaM kinase II or GSK-3. These results suggest that the site specificities of the non-PDPKs that participate in PHF-tau hyperphosphorylation can be modulated at the substrate level by the phosphorylation state of tau.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium/phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - PDPK proline-dependent protein kinase  相似文献   

20.
A highly purified preparation of protein kinase FA (where FA is the activating factor for phosphatase 1)/glycogen synthase kinase 3 from rabbit muscle readily phosphorylated bovine neurofilaments. All three neurofilament proteins, the high, middle, and low molecular proteins (NF-H, NF-M, and NF-L), were phosphorylated when intact filaments were incubated with the kinase. Experiments with individual proteins showed that NF-M was the best substrate. At protein concentrations of 0.13 mg/ml, the initial rate of NF-M phosphorylation was 30% of that observed for glycogen synthase. Km values were 0.24 mg/ml (7 x 10(-7) M tetramer) for glycogen synthase and 0.10 mg/ml (5 x 10(-7) M dimer) for NF-M. Vmax values were 0.36 mumol/min/mg for glycogen synthase and 0.035 mumol/min/mg for NF-M. Dephosphorylated NF-M was phosphorylated only half as much as native NF-M; this is consistent with the known substrate specificity of the kinase. The possible involvement of FA/GSK-3 in the phosphorylation of neurofilaments in vivo is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号