首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Abstract: The developmental properties of primary rat cerebellar granule cells have been characterised with respect to their expression of GABAA receptor subtypes using both an immunological approach and radioligand binding assays. At day 1 in culture, the GABAA receptor α1 subunit was detectable in immunoblots and increased in level up to day 9. The GABAA receptor α6 subunit was not detectable at day 1; however, at days 3–5, a specific Mr 58,000 anti-α6 1–16 Cys immunoreactive species was present which further increased in level up to 9 days in culture. Similar qualitative results were obtained for the expression of the GABAA receptor α6 subunit in age-matched rat cerebellar membranes. In parallel studies, it was found that although there was an overall increase in [3H]Ro 15–4513 binding sites with days in culture, the relative contributions of diazepam-sensitive and diazepam-in-sensitive [3H]Ro 15–4513 binding changed. A time-dependent enrichment of the diazepam-insensitive binding site up to a maximum of 74% of total [3H]Ro 15–4513 sites was found. This was concomitant with the appearance of the GABAA receptor α6 subunit. These results are in agreement with the pharmacology described for α6βγ2 cloned receptors. They suggest a developmentally regulated expression of the GABAA receptor α6 subunit gene at a time that is correlated in vivo with establishment of neuronal connections.  相似文献   

2.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

3.
This study aimed to investigate the effects of obovatol isolated from Magnolia obovata on pentobarbital-induced sleeping behaviors and to determine whether these effects were mediated by GABAA receptors/chloride channel activation, using a western blot technique and Cl? sensitive fluorescence probe. GABAA receptors subunits expression and chloride influx were investigated in cultured cerebellar granule cells. Obovatol (0.05, 0.1, and 0.2 mg/kg) prolonged the sleeping time induced by pentobarbital (42 mg/kg). In addition, obovatol (20 and 50 μM) significantly increased Cl? influx in the primary cultured cerebellar granule cells. Moreover, obovatol increased the expression of GABAA receptor α-, β-, and γ-subunits. However, it had no effect on the abundance of the expression of glutamic acid decarboxylase (GAD), suggesting that obovatol might not activate GAD. These results suggest that obovatol potentiates pentobarbital-induced sleeping time through the GABAA receptors/chloride channel activation.  相似文献   

4.
Abstract: The γ-aminobutyric acidA (GABAA)/benzodiazepine (BZ) receptor is a pentamer composed of subunits belonging to several classes (α1–6, β1–4, γ1–4, δ, and ρ1 and ρ2). In situ hybridization, radioligand autoradiography, and immunocytochemistry were used to examine GABAA/BZ receptor α1, α6, β2, β3, and γ2 subunit expression in murine Purkinje, granule, and deep cerebellar neurons after in vivo ethanol exposure. Chronic ethanol treatment resulted in decreased α1 subunit mRNA expression in each cell type, whereas the expression of α6 and γ2 subunit mRNA levels increased; no changes were observed in the expression of β2 and β3 subunit mRNA. GABA and BZ agonist binding and antibody staining paralleled the changes in mRNA levels. Acute ethanol injection resulted in increased expression of α1 and β3 mRNAs, whereas levels of α6, β2, and γ2 mRNAs remained stable. Our results indicate that, in cerebellar neurons, the expression of specific GABAA/BZ receptor subunit mRNAs, polypeptides, and binding sites is independently regulated by in vivo administration of alcohol. The observed changes were not restricted to any one cerebellar cell type, because subunit expression in Purkinje, granule, and deep cerebellar cells was similarly affected.  相似文献   

5.
We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.  相似文献   

6.
Summary GABAA receptors present on rat cerebellar granule cells in culture were studied by the whole cell patch clamp technique. Muscimol appeared to be more potent than GABA itself in activating Cl currents. A benzodiazepine, flunitrazepam, only slightly (10%) potentiated the GABA action.These results support the previous suggestion that GABAA receptors containing the subunit, such as those in the cerebellum granule cells, are potently activated by muscimol. The present results also bear out the concept that GABA action on receptors containing the subunit is not potentiated by benzodiazepines.  相似文献   

7.
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors.  相似文献   

8.
Abstract: We have shown that the vertebrate neuropeptide N-acetylaspartylglutamate (NAAG) meets the criteria for a neurotransmitter, including function as a selective metabotropic glutamate receptor (mGluR) 3 agonist. Short-term treatment of cerebellar granule cells with NAAG (30 µM) results in the transient increase in content of GABAAα6 subunit mRNA. Using quantitative PCR, this increase was determined to be up to 170% of control values. Similar effects are seen following treatment with trans-1-aminocyclopentane-1,3-dicarboxylate and glutamate and are blocked by the mGluR antagonists (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine and (2S)-α-ethylglutamic acid. The effect is pertussis toxin-sensitive. The increase in α6 subunit mRNA level can be simulated by activation of other receptors negatively linked to adenylate cyclase activity, such as adenosine A1, α2-adrenergic, muscarinic, and GABAB receptors. Forskolin stimulation of cyclic AMP (cAMP) levels abolished the effect of NAAG. The change in α6 levels induced by 30 µM NAAG can be inhibited in a dose-dependent manner by simultaneous application of increasing doses of the β-adrenergic receptor agonist isoproterenol. The increase in α6 mRNA content is followed by a fourfold increase in α6 protein level 6 h posttreatment. Under voltage-clamped conditions, NAAG-treated granule cells demonstrate an increase in the furosemide-induced inhibition of GABA-gated currents in a concentration-dependent manner, indicating an increase in functional α6-containing GABAA receptors. These data support the hypothesis that NAAG, acting through mGluR3, regulates expression of the GABAAα6 subunit via a cAMP-mediated pathway and that cAMP-coupled receptors for other neurotransmitters may similarly influence GABAA receptor subunit composition.  相似文献   

9.
Abstract: Two GABAA receptor subunit-specific antibodies anti-α6 and anti-α1 have been used for elucidating the relationship between the presence of α1 and/or α6 subunits in the cerebellar GABAA receptors and the benzodiazepine-binding specificity. Receptor immunoprecipitation with the subunit-specific antibodies shows that 39% of the cerebellar GABAA receptors have α6, whereas 76% of the receptors have α1 as determined by [3H]muscimol binding. Results show that 42–45% of the receptors having α6 also have α1, whereas 13–15% of the receptors that contain α1 also have α6. The immunoprecipitation results as well as immunopurification and immunoblotting experiments reveal the existence of three types of cerebellar GABAA receptors; i.e., one has both α1 and α6 subunits, a second type has α1 but not α6, and a third type has α6 but not α1 subunits. The results also show that receptors where α1 and α6 subunits coexist have two pharmacologically different benzodiazepine-binding properties, each associated with a different α subunit. The α1 subunit contributes the high-affinity binding of [3H]Ro 15-1788 (flumazenil) and the diazepam-sensitive binding of [3H]Ro 15-4513. The α6 subunit contributes the diazepam-insensitive binding of [3H]Ro 15-4513, but it does not bind [3H]Ro 15-1788 with high affinity. Thus, in the cerebellar α1–α6 GABAA receptors, there is no dominance of the pharmacology of one α subunit over the other.  相似文献   

10.
GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the -subunit of the GABAA/benzodiazepine/chloride channel complex. At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations to be performed. Quantification of the labeling intensity revealed a higher concentration of GABAA-receptors per m plasma membrane in the cell bodies than in the processes. In discrete areas an extremely high density of the GABAA-receptors was observed. No specific labeling of GABAA-receptors was observed in dissociated primary cultures of cerebellar astrocytes.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

11.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

12.
Abstract

G A B AA/Benzodiazepine receptors are formed by the assembly of presumably five polypeptides with unknown stoichiometry. Six α, three β, two λ, and one δ subunit have been characterized on the molecular level. In analogy to the nicotinic acetylcholine receptor, and supported by functional analysis of recombinantly expressed GABAA receptor subunits, a structure containing at least three different polypeptides has been proposed for the functional GABAA and benzodiazepine regulated Cl?-channel. Using an α1 subunit specific antiserum we could show that additional α variants are present in α1 subunit containing GABAA/Benzodiazepine receptor complexes. This suggests that the diversity of GABAA/Benzodiazepine receptors may be larger than previously thought.  相似文献   

13.
Abstract: The γ-aminobutyric acid type A receptor cDNAs encoding the α6 subunit homologues from chicken and goldfish have been cloned and sequenced. These proteins exhibit 83 and 75% identity, respectively, to the rat α6 polypeptide. In situ hybridization has demonstrated that, as in mammals, the avian and teleost fish α6 subunit genes are predominately expressed in cerebellar granule cells. Correspondingly, flunitrazepam-nondisplaceable binding of [3H]Ro 15-4513 (a benzodiazepine partial inverse agonist), which is a major characteristic of γ-aminobutyric acid type A receptors that contain the α6 polypeptide, is also mainly found for cerebellar granule cells of fish and chick. The conservation of this expression pattern suggests that γ-aminobutyric acid type A receptors possessing the α6 subunit are of fundamental importance for cerebellar function and that the corresponding gene regulatory elements, e.g., granule cell-specific enhancers, have also been conserved.  相似文献   

14.
In the internal granular layer of the cerebellar cortex the polysynaptic complexes called glomeruli consist mainly of homogeneous populations of glutamatergic and GABAergic synapses, both located on granule cell dendrites. A subcellular fraction enriched in glomeruli was prepared from rat cerebellum, and the distribution of GABAA and of benzodiazepine binding sites between membranes derived from this fraction (fraction G) and from a total cerebellar homogenate (fraction T) was studied. The benzodiazepine and GABA binding sites were measured by the binding of agonists [3H]flunitrazepam and [3H]muscimol, respectively. The results indicate that both binding sites are present, but only slightly enriched, in the glomerular synapses. We found a muscimol/flunitrazepam binding site ratio of two, which is consistent with the enrichement of muscimol binding sites in the granular layer shown by both autoradiographic with radioactive glutamatergic ligands and in situ hybridization experiments respectively.  相似文献   

15.
Abstract: Three novel antisera to the γ2 subunit of the γ-aminobutyric acidA (GABAA) receptor/benzodiazepine receptor (GABAAR/BZDR) complex have been made. Anti-γ2S and anti-γ2L are specific antibodies to synthetic peptides that recognize the γ2S (short) and γ2L (long) forms, respectively, of the γ2 subunit. An antibody (anti-γ2IL2) to staphylococcal protein A fusion protein of the large intracellular loop (γ2IL) located between the putative transmembrane segments M3 and M4 of γ2S recognizes both γ2S and γ2L subunits. The antibodies immunoprecipitated both the solubilized and affinity-purified GABAAR/BZDR from rat and bovine brain. Immunoblots with membranes from rat brain cerebral cortex as well as with affinity-purified receptor from bovine cortex show that anti-γ2S and anti-γ2L recognize peptides of 45,000 and 47,000 Mr, respectively. Immunoprecipitation experiments indicate that γ2S is more prevalent in hippocampus, whereas γ2L is more abundant in cerebellum. Intermediate values for each form are found in the cerebral cortex. The results suggest that in the rat brain there is a considerable amount of colocalization of γ2S and γ2L in the same receptor complex. In the cerebral cortex, 15% of the BZDRs contain both γ2S and γ2L subunits and 41–48% of the γ2L subunit coexists with γ2S in the same receptor complex. In cerebellum, in 27% of the clonazepam-sensitive and 39% of the clonazepam-insensitive BZDRs the γ2S and γ2L coexist in the same receptor complex. The latter are presumably localized in granule cells and also contain α6. In addition, almost all (93%) the clonazepam-insensitive BZDRs that contain γ2L also contain a γ2S subunit in the same receptor complex. The most likely interpretation of the results is that there is an important population of granule cell receptors that contain α6, γ2S, and γ2L coexisting in the same receptor complex. Nevertheless, 31% of the cerebellar receptors that contain α6 subunit(s) have neither γ2S nor γ2L subunits. There are also species differences with respect to the relative abundance of γ2S and γ2L. These results might be relevant for understanding the molecular mechanisms underlying some of the GABAAR/BZDR-mediated effects of ethanol intoxication involving cerebellar granule cells.  相似文献   

16.
Extracts from Glycyrrhiza are traditionally used for the treatment of insomnia and anxiety. Glabridin is one of the main flavonoid compounds from Glycyrrhiza glabra and displays a broad range of biological properties. In the present work, we investigated the effect of glabridin on GABAA receptors. For this purpose, we employed the two-electrode voltage-clamp technique on Xenopus laevis oocytes expressing recombinant GABAA receptors. Through this approach, we observed that glabridin presents a strong potentiating effect on GABAA α1β(1?3)γ2 receptors. The potentiation was slightly dependent on the β subunit and was most pronounced at the α1β2γ2 subunit combination, which forms the most abundant GABAA receptor in the CNS. Glabridin potentiated with an EC50 of 6.3±1.7 µM and decreased the EC50 of the receptor for GABA by approximately 12-fold. The potentiating effect of glabridin is flumazenil-insensitive and does not require the benzodiazepine binding site. Glabridin acts on the β subunit of GABAA receptors by a mechanism involving the M286 residue, which is a key amino acid at the binding site for general anesthetics, such as propofol and etomidate. Our results demonstrate that GABAA receptors are strongly potentiated by one of the main flavonoid compounds from Glycyrrhiza glabra and suggest that glabridin could contribute to the reported hypnotic effect of Glycyrrhiza extracts.  相似文献   

17.
18.
Delta (δ) subunit containing GABAA receptors are expressed extra‐synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with α6 subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABAA receptor pentamers by subunit concatenation. These receptors (composed of α6, β3 and δ subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one and to 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. α6‐β3‐α6/δ receptors showed a substantial response to GABA alone. Three receptors, β3‐α6‐δ/α6‐β3, α6‐β3‐α63‐δ and β3‐δ‐β36‐β3, were only uncovered in the combined presence of the neurosteroid 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one with GABA. All four receptors were activated by 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the δ subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the δ subunit can assume multiple positions in a receptor pentamer composed of α6, β3 and δ subunits.  相似文献   

19.
Pyrazoloquinolinones (PQs) have been extensively studied as modulators of GABAA receptors with different subunit composition, exerting modulatory effects by binding at α+/β- interfaces of GABAA receptors. PQs with a substituent in position R7 have been reported to preferentially modulate α6- subunit containing GABAA receptors which are mostly expressed in the cerebellum but were also found in the olfactory bulb, in the cochlear nucleus, in the hippocampus and in the trigeminal sensory pathway. They are considered potentially interesting in the context of sensori-motor gating deficits, depressive-like behavior, migraine and orofacial pain. Here we explored the option to modify the lead ligands’ R7 position. In the compound series we observed two different patterns of allosteric modulation in recombinantly expressed α6β3γ2 receptors, namely monophasic and biphasic positive modulation. In the latter case the additional phase occurred in the nanomolar range, while all compounds displayed robust modulation in the micromolar range. Nanomolar, near silent binding has been reported to occur at benzodiazepine binding sites, but was not investigated at the diazepam insensitive α6+/γ2- interface. To clarify the mechanism underlying the biphasic effect we tested one of the compounds in concatenated receptors. In these constructs the subunits are covalently linked, allowing to form either the α6+/γ2- interface, or the α6+/β3- interface, to study the resulting modulation. With this approach we were able to ascribe the nanomolar modulation to the α6+/γ2- interface. While not all compounds display the nanomolar phase, the strong modulation at the α6+/β3 interface proved to be tolerant for all tested R7 groups. This provides the future option to introduce e.g. isotope labelled or fluorescent moieties or substituents that enhance solubility and bioavailability.  相似文献   

20.
GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called “loop D” which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2- subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the “100H/R-site” benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3- subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50–17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding pocket at a α4/6+β3- EtOH/Ro15-4513 site. This model reconciles many years of alcohol research on GABARs and provides a plausible explanation for the competitive relationship between ethanol and iBZ alcohol antagonists in which bulky moieties at the C7 position compete with ethanol for its binding site. We conclude with a critical discussion to suggest that much of the controversy surrounding this issue might be due to fundamental species differences in alcohol and alcohol antagonist responses in rats and mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号