首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

4.
Yung LY  Tso PH  Wu EH  Yu JC  Ip NY  Wong YH 《Cellular signalling》2008,20(8):1538-1544
Differentiation of PC12 cells by nerve growth factor (NGF) requires the activation of various mitogen-activated protein kinases (MAPKs) including p38 MAPK. Accumulating evidence has suggested cross-talk regulation of NGF-induced responses by G protein-coupled receptors, thus we examined whether NGF utilizes G(i/o) proteins to regulate p38 MAPK in PC12 cells. Induction of p38 MAPK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). NGF-dependent p38 MAPK phosphorylation became insensitive to PTX treatment upon transient expressions of Galpha(z) or the PTX-resistant mutants of Galpha(i2) and Galpha(oA). Moreover, Galpha(i2) was co-immunoprecipitated with the TrkA receptor from PC12 cell lysates. To discern the participation of various signaling intermediates, PC12 cells were treated with a panel of specific inhibitors prior to the NGF challenge. NGF-induced p38 MAPK phosphorylation was abolished by inhibitors of Src (PP1, PP2, and SU6656) and MEK1/2 (U0126). Inhibition of the p38 MAPK pathway also suppressed NGF-induced PC12 cell differentiation. In contrast, inhibitors of JAK2, phospholipase C, protein kinase C and Ca(2+)/calmodulin-dependent kinase II did not affect the ability of NGF to activate p38 MAPK. Collectively, these studies indicate that NGF-dependent p38 MAPK activity may be mediated via G(i2) protein, Src, and the MEK/ERK cascade.  相似文献   

5.
6.
Past research has shown that natural products of plant and marine origins and their congeners enhance the actions of neuritogenic factors of the central nervous system (CNS) such as nerve growth factor (NGF). However, the role of fluorine substitutions in their structure–activity relationship (SAR) has not been explored. We have synthesized a trifluoromethyl analog of verbenachalcone (VC), a pharmacologically active natural compound previously shown to potentiate NGF activity. This analog, designated C278, enhances neurite outgrowth and proliferation of NeuroScreen-1™ (NS-1) cells, a subclone of PC12 pheochromocytoma cells. C278 increases the percentage of neurite bearing cells in the presence of suboptimal doses of NGF in comparison with controls treated with NGF alone. In addition, C278 stimulates cell growth in reduced serum and serum-free cell culture conditions based on our observation of increases in cell number and metabolic assessment with MTT reduction and resazurin assays. The addition of C278 partially restored inhibition of NGF-induced neurite outgrowth by the mitogen-activated protein kinase kinase (MEK) inhibitors PD98059 and U0126. Short-term sequential exposure of cells to U0126, C278, and NGF enhanced phosphorylation of extracellular signal-regulated kinase (ERK) in comparison with cells treated with only the MEK inhibitor and NGF. C278 also attenuated cell growth arrest caused by exposure to PD98059, U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor, LY294002 but did not alter phosphorylation of Akt, a classic downstream target of PI3K during cell survival. These data suggest that C278 promotes NGF-dependent neurite outgrowth in NS-1 cells through a MEK signaling pathway by a mechanism that alters short-term activation of ERK. In contrast, C278 promotes PI3K-mediated survival independently of Akt phosphorylation.  相似文献   

7.
Activation of phosphatidylinositol 3-kinase (PI3-K) is considered to be a key event upon stimulation of cells with growth factors. Akt is known to be a downstream target of PI3-K when it is activated by nerve growth factor (NGF). NGF induces cell differentiation of PC12 cells as indicated by neurite outgrowth. In order to investigate the role of PI3-K/Akt in NGF-induced differentiation of PC12 cells, we generated cells ectopically expressing constitutively activated (CA), wild type (WT) and dominant negative (DN) forms of Akt. NGF-induced neurite outgrowth was greatly accelerated in the cells expressing CA-Akt, and dramatically inhibited in those expressing DN-Akt. Pre-treatment with an Akt inhibitor, ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H- hexahydro-1,4-diazepine], inhibited NGF-induced Akt phosphorylation as well as neurite outgrowth but did not markedly affect the activities of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The PI3-K inhibitors wortmannin and LY294002 blocked NGF-induced Akt phosphorylation as well as neurite outgrowth. These results indicate that PI3-K/Akt is a positive regulator of NGF-induced neuronal differentiation in PC12 cells.  相似文献   

8.
9.
Nerve growth factor (NGF)-mediated activation of mitogen-activated protein kinases (MAPK) is critical for differentiation and apoptosis of PC12 cells. Since NGF employs stress-activated c-Jun N-terminal kinase (JNK) to regulate both programmed cell death and neurite outgrowth of PC12 cells, we examined NGF-regulated JNK activity and the role of Gi/o proteins. Induction of JNK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). To discern the participation of various signaling intermediates, PC12 cells were treated with specific inhibitors prior to NGF challenge. NGF-elevated JNK activity was abolished by inhibitors of JNK, p38 MAPK, Src, JAK3 and MEK1/2. NGF-dependent JNK phosphorylation became insensitive to PTX treatment upon transient expressions of Gαz or the PTX-resistant mutants of Gαi1–3 and GαoA. Collectively, these studies indicate that NGF-dependent JNK activity may be mediated via Gi1–3 proteins, JAK3, Src, p38 MAPK and the MEK/ERK cascade.  相似文献   

10.
11.
Coupling of the three known alpha1-adrenergic receptor (alpha1-AR) subtypes to mitogen-activated protein kinase (MAPK) pathways were studied in stably transfected PC12 cells. Subclones stably expressing alpha1A-, alpha1B-, and alpha1D-ARs under control of an inducible promoter, or at high and low receptor density, were isolated and characterized. Radioligand binding showed similar ranges of expression of each subtype. Norepinephrine (NE) increased inositol phosphate formation and intracellular Ca2+ level in these cells in a manner dependent on receptor density. However, alpha1A-ARs activated these second messenger responses more effectively than alpha1B-ARs, whereas alpha1D-ARs were least effective. NE stimulated activation of extracellular signal-regulated kinases (ERKs) in cells expressing all three alpha1-AR subtypes, although alpha1A- and alpha1B-ARs caused larger ERK activation than did alpha1D-ARs. Nerve growth factor (NGF) caused similar levels of ERK activation in all subclones. NE also activated p38 MAPK in alpha1A- and alpha1B- but not alpha1D-transfected cells and activated c-Jun NH2-terminal kinase (JNK) only in alpha1A-transfected cells. NE, but not NGF, strongly stimulated tyrosine phosphorylation of a 70-kDa protein only in alpha1A-transfected PC12 cells. NE caused neurite outgrowth only in alpha1A-expressing PC12 cells, but not in alpha1B- or alpha1D-transfected cells, whereas NGF caused neurite outgrowth in all cells. These studies show that alpha1A-ARs activate all three MAPK pathways, alpha1B-ARs activate ERKs and p38 but not JNKs, and alpha1D-ARs only activate ERKs. Only the alpha1A-AR-expressing cells differentiated in response to NE. The relationship of these responses to second messenger pathways activated by these subtypes is discussed.  相似文献   

12.
The biochemical and biological properties of a novel neuroendocrine-associated phosphatase (NEAP) were characterized. NEAP had a sequence characteristic of a dual-specificity phosphatase (DSP), and was preferentially expressed in neuroendocrine cells/tissues as well as in skeletal muscle and heart. Expression of NEAP was up-regulated in nerve growth factor (NGF)-treated, differentiated PC12 cells. NEAP was cytosolic and did not apparently have effects against extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase activated by various stimuli. Although NEAP and MAPK phosphatase (MPK)-1 showed similar phosphatase activity towards p-nitro phenylphosphate (pNPP), in contrast to MKP-1, NEAP did not dephosphorylate JNK and p38-MAPK in vitro. Overexpression of NEAP, but not the C152S mutant, in PC12 cells suppressed NGF-induced phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase (PI3K) and Akt activation. Overexpression of NEAP also suppressed neurite outgrowth induced by NGF and sensitized PC12 cells to cisplatin-induced apoptosis. Suppression of NEAP by RNA interference enhanced NGF-induced neurite outgrowth and Akt activation. Our results indicated that, unlike other DSPs, down-regulation of conventional MAPKs was not the major function of NEAP. Furthermore, NEAP might be involved in neuronal differentiation via regulation of the PI3K/Akt signaling.  相似文献   

13.
We obtained a drug-hypersensitive PC12 mutant cell (PC12m3), in which neurite outgrowth was strongly stimulated by various drugs such as FK506, calcimycin and cAMP, under the condition of NGF treatment. The frequency of neurite outgrowth stimulated by FK506 was approximately 40 times greater than by NGF alone. The effects of FK506 on neurite outgrowth in PC12m3 cells were inhibited by rapamycin, an FK506 antagonist, and by calcimycin, a calcium ionophore. PC12m3 cells had a strong NGF-induced MAP kinase activity, the same as PC12 parental cells. However, FK506-induced MAP kinase activity was detected only in PC12m3 cells. The activation of MAP kinase by FK506 in PC12m3 cells was markedly inhibited by rapamicin and calcimycin. FK506-induced MAP kinase activity was also inhibited by MAP kinase inhibitor U0126. These results demonstrate that drug-hypersensitive PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

14.
The cellular effects of eleven compounds including chalcone glycosides isolated from Brassica rapa L. ‘hidabeni’ and their synthetic derivatives were studied in rat pheochromocytoma PC12 cells. Of the compounds tested, 4′-O-β-d-glucopyranosyl-3′,4-dimethoxychalcone (A2) significantly increased the levels of the phosphorylated forms of extracellular signal-regulated kinases 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38MAPK), and stress-activated protein kinases/Jun amino-terminal kinases (JNK/SAPK), but it did not affect Akt. Nerve growth factor (NGF), a well-known neurotrophic factor, increased the levels of phosphorylated ERK1/2, JNK/SAPK, and Akt but not p38MAPK, which may mediate marked neurite outgrowth. Signals evoked by A2 shared common characteristics with those induced by NGF; therefore, we evaluated the neuritogenic activity of A2 and found it induced only weak neurite outgrowth. However, this effect was enhanced by pre-treatment with a p38MAPK inhibitor, suggesting that the phosphorylation of p38MAPK down-regulated neurite outgrowth. From the results of this study, it was found that A2 in combination with a p38MAPK inhibitor can induce NGF-like effects. Hence, a combination of chalcone glycosides containing A2 and a p38MAPK inhibitor increases the likelihood that chalcone glycosides could be put to practical use in the form of drugs or alternative medicines to maintain neural health.  相似文献   

15.
The spin trap alpha-phenyl-N-tert-butylnitron (PBN) is widely used for studies of the biological effects of free radicals. We previously reported the protective effects of PBN against ischemia-reperfusion injury in gerbil hippocampus by its activation of extracellular signal-regulated kinase (ERK) and suppression of both stress-activated protein kinase and p38 mitogen-activated protein kinase. In the present study, we found that PBN induced neurite outgrowth accompanied by ERK activation in PC12 cells in a dose-dependent manner. The induction of neurite outgrowth was inhibited significantly not only by transient transfection of PC12 cells with dominant negative Ras, but also by treatment with mitogen-activated protein kinase/ERK kinase inhibitor PD98059. The activation of receptor tyrosine kinase TrkA was not involved in PBN-induced neurite outgrowth. A protein kinase C (PKC) inhibitor, GF109203X, was found to inhibit neurite outgrowth. The activation of PKCepsilon was observed after PBN stimulation. PBN-induced neurite outgrowth and ERK activation were counteracted by the thiol-based antioxidant N-acetylcysteine. From these results, it was concluded that PBN induced neurite outgrowth in PC12 cells through activation of the Ras-ERK pathway and PKC.  相似文献   

16.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

17.
18.
Prominent neurite outgrowth induced by genipin, a plant-derived iridoid, was substantially inhibited by addition of NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, and carboxy-PTIO, an NO scavenger, in PC12h cells. Increases of the NADPH-diaphorase activity and neuronal and inducible NOS proteins in cells preceded the neurite outgrowth after addition of genipin to medium. NO donors could induce the neurite outgrowth dose-dependently in the cells. On the other hand, an inhibitor of soluble guanylate cyclase (SGC), which is known to be a stimulatory target of NO, abolished greatly the genipin-induced neurite outgrowth. Addition of extracellular signal-regulated kinase (ERK) kinase inhibitors could almost completely abolish the neurite induction. L-NAME remarkably depressed genipin-stimulated phosphorylation of ERK-1 and -2. A neuritogenic effect of nerve growth factor (NGF) in PC12h cells was also remarkably inhibited by the NOS inhibitor, NO scavenger and SGC inhibitor. These findings suggest that induced NO production followed by cyclic GMP-mediated stimulation of the mitogen-activated protein kinase (MAPK) cascade is implicated in the neuritogenesis by genipin and NGF in PC12h cells.  相似文献   

19.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

20.
MAPK-dependent activation of AP-1 protein c-Jun is involved in PC12 cell differentiation and apoptosis. However, the role of other AP-1 proteins and their connection to MAPKs during growth, differentiation and apoptosis has remained elusive. Here we studied the activation of AP-1 proteins in response to ERK, JNK, and p38 signaling upon NGF, EGF and anisomycin exposures. All treatments caused different kinetics and strength of MAPK and AP-1 activities. NGF induced persistent ERK and AP-1 activities, whereas upon EGF and anisomycin exposures, their activities were only weakly and transiently induced. The sustained AP-1 activity was associated with concomitant c-Fos and c-Jun expression and phoshorylation, which were JNK and ERK dependent. While inhibition of the ERK, JNK, and p38 activities partially prevented AP-1 activity and suppressed differentiation, none of them was required for anisomycin-induced apoptosis. The importance of c-Fos and c-Jun as mediators of differentiation was demonstrated by the findings that the corresponding siRNAs suppressed NGF-induced neurite outgrowth. However, the capacity of c-Fos to promote differentiation required cooperation with Jun proteins. In contrast, Fra-2 expression was not required for the differentiation response. Together, the results show that sustained c-Jun and c-Fos activities mediate MAPK signaling and are essential for differentiation of PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号