首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
半乳糖凝集素家族通过糖识别结构域(CRD)可以专一性识别和结合含β-半乳糖的多糖配体来发挥其生物学功能.到目前发现的CRD对β-半乳糖的识别模式是非常保守的,在结构已知的半乳糖凝集素结构中,一个CRD只能结合一个多糖配体分子.最近,通过对人源半乳糖凝聚素-3 CRD与对硝基TF二糖(TFN)复合物的晶体结构解析首次发现,一个CRD可以同时结合2个TFN分子.与这2个TFN分子有双向结合的残基突变体E165A结构分析显示,一个残基的突变引起的结构上的微小变化会使结合位点2丧失结合糖底物的能力,而位点1的配体结合却不受影响.这表明,结合位点1对糖底物保守的识别和结合是基本的、主要的,而结合位点2对于糖有条件的结合,是额外的、次要的.序列比对和立体化学分析显示,参与新位点2结合的关键残基在其他半乳糖凝集素分子中都是保守的,而它们参与糖配体结合并不常见,表明它们作用的发挥是有条件的.可能在复杂寡聚结构的情况下,如有多重分支结构,双重结合位点将有利于对这类配体分子的辨识和结合,已有一系列研究报道,具有分支结构的寡糖与半乳糖分子的亲和势明显高于单价糖配体,与上述分析相一致.对这类双重位点糖结合的可能生物学意义进行了讨论.  相似文献   

2.
聚糖多以蛋白质和脂配基形式存在,在生物体内的信息传递、细胞识别和蛋白质折叠等生物过程中具有十分重要作用,是继核酸和蛋白质之后被发现的第三类生物信息分子.但聚糖结构复杂,并存在大量异构体,无法象DNA一样进行合成和测序.根据聚糖分子能够与凝集素或糖结合蛋白特异性结合,提出并发展了糖微阵列技术.此技术在聚糖结构与功能研究中已显示出优越性.通过对糖微阵列构建方式及检测方法的探讨,对近些年来糖微阵列技术的发展进行了综述.  相似文献   

3.
半乳糖凝集素的结构和功能   总被引:2,自引:0,他引:2  
半乳糖凝集素的结构和功能关键词半乳糖凝集素凝集素是能与特定糖结构结合的蛋白质,能够识别广泛分布于动物组织中的糖复合物。动物凝集素可分为4类:C类凝集素(包括选择蛋白,Selectin)、P类凝集素、正五聚蛋白(Pentraxins)和半乳糖凝集素(暂...  相似文献   

4.
肿瘤与正常细胞表面糖链结构的流式细胞术分析   总被引:1,自引:0,他引:1  
为了比较正常与肿瘤细胞表面的糖链结构差异,凝集素用荧光素标记后作为研究细胞膜糖链结构的探针,采用流式细胞技术在分子水平上分析。结果显示正常与肿瘤肝细胞与同一浓度的凝集素探针结合量有明显的不同。与凝集素ConA-FITC结合后,正常肝细胞的荧光峰较肿瘤肝细胞的荧光峰明显右移;与凝集素WGA-FITC、PHA-FITC结合后,正常肝细胞的荧光峰较肿瘤肝细胞的荧光峰明显左移。由于凝集素可识别特定糖链结构,该方法说明肿瘤肝细胞的糖链结构与正常肝细胞相比具有特征变化,即平分型糖链和唾液酸含量丰富,可能出现偏二天线以及天线数的增加。  相似文献   

5.
PCR技术检测食源性致病菌的研究进展   总被引:3,自引:0,他引:3  
食源性致病菌的检测技术是食源性疾病预防与控制的关键环节。PCR是近年来广泛应用于食源性致病菌快速检测的方法之一。在食源性致病菌中,用于PCR检测的靶基因包括各种毒力基因、酶基因及特异性鉴别基因。这些靶基因的发现推动了食源性致病菌PCR快速检测的发展。  相似文献   

6.
建立了凝集素芯片技术检测糖蛋白的方法,对实验条件进行了优化,应用凝集素芯片初步检测分析了Chang?蒺s liver正常肝细胞总蛋白中的糖蛋白糖链构成.将凝集素ConA、GNA固定于环氧化修饰的玻片表面,用Cy3标记标准糖蛋白RNaseB,利用凝集素识别特异糖链的原理建立凝集素芯片检测糖蛋白的方法.摸索出最佳封闭剂是含1% BSA的磷酸缓冲液,最佳孵育时间及温度为3 h和室温,最佳孵育缓冲液为含1% BSA和0.05% Tween-20的磷酸缓冲液,并用甘露糖抑制实验验证了凝集素芯片结合的特异性.用包含10种凝集素的芯片,成功解析了标准糖蛋白RNaseB、Fetuin的糖链构成,证实了凝集素芯片检测糖蛋白糖链的可行性.最后用凝集素芯片初步检测分析了Chang?蒺s liver正常肝细胞总蛋白中的糖蛋白糖链构成,发现 Chang's liver正常肝细胞总蛋白中的糖蛋白可能有多价 Sia或GlcNAc、terminalα-1,3 mannose、GalNAc、Galβ-1,4GlcNAc这些糖链结构的存在.蛋白质糖基化是一种重要的翻译后修饰,它在微生物感染、细胞分化、肿瘤转移、细胞癌变等生命活动中起着重要作用,因此近年来蛋白质的糖基化研究受到广泛的重视,但由于缺乏一种简便、快速、高通量的检测手段,蛋白质糖基化修饰的研究发展缓慢.凝集素芯片技术的出现实现了对糖蛋白的快速、准确、高通量的检测 分析.  相似文献   

7.
在细胞生物学,研究中固相化的植物凝集素是一种较有用的亲和吸附剂。植物凝集素能够识别并结合多糖、糖蛋白或糖脂,类似于酶与底物、抗体与抗原的识别和结合原理。然而,凝集素与它识别的糖以非共价结合,结合力弱且可逆。因此,利用凝集素识别一定顺序的糖链,并与之专一地结合的特性,可用于分离和纯化含糖大分子物质。前几年,我们证明了人体肝癌细胞表面存在着与3—5个月龄胎人体肝细胞起交叉反应的膜抗原,并用3MKCl  相似文献   

8.
凝集素是一类能够识别特异性糖并与之非共价结合的蛋白或糖蛋白,因其具有特定的识别受体,在免疫系统和发育过程中发挥了重要的作用。鳞翅目昆虫凝集素的相对分子质量一般都相对较小,且活性在该类昆虫的不同发育时期各不相同,说明凝集素活性的诱导机制较为复杂。本文分析了目前国内外初步探索的几种鳞翅目昆虫凝集素及其相关的外源凝集素。  相似文献   

9.
食源性疾病对人类健康产生越来越大的威胁,且因为抗菌类药物的广泛使用,食源性致病菌出现多重耐药现象。作为预防与控制食源性致病菌的关键环节,食源性致病菌快速检测技术的开发尤为重要。传统检测技术包括微生物培养法、免疫学检测技术和分子检测技术,存在周期长、对检测人员和检测环境要求高等不足,如何将不同检测技术的优点集于一体而规避相应的缺点是突破方向。随着生物科技的发展,新型检测技术逐渐兴起,如基于光学、电化学的生物传感技术或多种技术结合的新应用等。本文综述了常见食源性致病菌的生理特性及相应感染疾病,讨论了传统检测方法优缺点,并详细介绍了新型生物传感器检测技术的发展及现状,以期为开发更加便捷、准确、灵敏的食源性致病菌现场检测技术提供参考。  相似文献   

10.
生物传感器在食源性致病菌检测中应用的研究进展   总被引:2,自引:0,他引:2  
食源性致病菌作为引起食源性疾病的主要因素,受到人们的高度重视,发展简便、快速、高灵敏度和低成本的食源性致病菌检测方法对降低食源性疾病发病率具有重要意义。生物传感器技术是一种由多学科交叉渗透发展形成的全新微量分析技术,具有灵敏度高、分析速度快等特点,被广泛应用于食源性致病菌的检测。文中介绍了生物传感器的基本原理,综述了常见的生物传感器在食源性致病菌检测中的应用,并对其发展趋势进行了展望。  相似文献   

11.
A C-type lectin was previously isolated from the blood of healthy Atlantic salmon (Salmo salar) and this salmon serum lectin (SSL) was found to opsonise bacteria. Selective binding to bacteria in vivo requires that the lectin be able to recognise a carbohydrate pattern on the bacterial surface distinguishable from that of the host. In order to investigate this selectivity in the lectin, a phage-display antibody was prepared and then used for detection of lectin by Western blotting. A carbohydrate binding-inhibition assay with Western blot detection of the lectin showed mannose to be the primary ligand and related sugars including glucose, N-acetylglucosamine and methyl alpha-D-mannopyranoside to be additional ligands of this lectin. The SSL in serum detected by Western blotting was shown to form a complex oligomer. These results show that the salmon serum lectin is oligomeric in blood and that it recognizes a broad spectrum of carbohydrates with optimal binding to mannose. The lectin might therefore be an ideal opsonin for multiple salmon pathogens with carbohydrate arrays on their surfaces. No similar lectins were identified in the sera of other fish by Western blotting using the phage-display antibody. Molecular analysis will be required in order to determine whether homologous lectins are expressed in related fish species. It is anticipated that similar lectins might have related pathogen recognition roles in divergent fish species.  相似文献   

12.
Under consideration are some questions concerning participation of lectins in the plant pathogenesis, including their role in the recognition of microbes and elicitors, and as a protective agent limiting pathogenic growth and displacements. "Classical" lectins also probably play an important role in these processes along with lectin-like receptor kinases. The principal features of those "classical" lectins are their relativly high concentration in the plant tissues, monosaccharide specificity, and limited number of the isolecin forms. Therefore, in supposing their participation in the biological recognition, it is needed to clarify how does a limited number of lectins with a limited number of carbohydrate groups can provide recognition of a potentially huge number of pathogens. This task can be fulfilled by recognition of carbohydrate residues peculiar to a particular microbe group by the "classical" lectins. These recognition processes are similar to acivity of the animal inherited immune system responsible for a rapid primary protection even in animals with well developed antibody system. A mechanism widening the carbohydrate specificity of the carbohydrate-binding center includes interaction with hydrophobic substituents in a carbohydrate residue, as well as lectin modular organization allowing for regulation of lectin binding with oligo- and polysaccharides. The free lectins effect on the microbe growth in both plants and animals. Such an action may be inhibiting in pathogenesis, while in the case of symbiotic relations, the lectin can bear signal that readdresses metabolism of a future symbiont. So, lectins seem to serve as natural deciphering device for information contained in the carbohydrate polymers, and reading of this information is the main lectin function in the cell.  相似文献   

13.
In order to design a method for the accurate detection and identification of food-borne pathogens, we used comparative genomics to select 70-mer oligonucleotide probes specific for 11 major food-borne pathogens (10 overlapping probes per pathogen) for use in microarray analysis. We analyzed the hybridization pattern of this constructed microarray with the Cy3-labeled genomic DNA of various food-borne pathogens and other bacteria. Our microarray showed a highly specific hybridization pattern with the genomic DNA of each food-borne pathogen; little unexpected cross-hybridization was observed. Microarray data were analyzed and clustered using the GenePix Pro 6.0 and GeneSpring GX 7.3.1 programs. The analyzed dendrogram revealed the discriminating power of constructed microarray. Each food-borne pathogen clustered according to its hybridization specificity and non-pathogenic species were discriminated from pathogenic species. Our method can be applied to the rapid and accurate detection and identification of food-borne pathogens in the food industry. In addition, this study demonstrates that genome sequence comparison and DNA microarray analysis have a powerful application in epidemiologic and taxonomic studies, as well as in the food safety and biodefense fields.  相似文献   

14.
食源性致病菌多重PCR快速检测方法建立与应用   总被引:2,自引:0,他引:2  
利用PCR技术,建立多组多重食源性致病菌PCR快速检测方法。设计受试菌特异性引物,反应体系中加入多对引物和多种DNA模板,采用正交试验优化PCR反应条件,进行特异性引物的PCR扩增。建立了多组多重食源性致病菌PCR快速检测方法,方法中所检测受试菌株和模拟样品均出现特异性扩增条带,结果与实际相符。所建立多组多重PCR快速检测体系符合设计要求,可以应用于食源性突发公共卫生事件的应急检测和日常样品检测工作。  相似文献   

15.
Surfactant protein A (SP-A), a C-type lectin, plays an important role in innate lung host defense against inhaled pathogens. Crystallographic SP-A·ligand complexes have not been reported to date, limiting available molecular information about SP-A interactions with microbial surface components. This study describes crystal structures of calcium-dependent complexes of the C-terminal neck and carbohydrate recognition domain of SP-A with d-mannose, d-α-methylmannose, and glycerol, which represent subdomains of glycans on pathogen surfaces. Comparison of these complexes with the unliganded SP-A neck and carbohydrate recognition domain revealed an unexpected ligand-associated conformational change in the loop region surrounding the lectin site, one not previously reported for the lectin homologs SP-D and mannan-binding lectin. The net result of the conformational change is that the SP-A lectin site and the surrounding loop region become more compact. The Glu-202 side chain of unliganded SP-A extends out into the solvent and away from the calcium ion; however, in the complexes, the Glu-202 side chain translocates 12.8 Å to bind the calcium. The availability of Glu-202, together with positional changes involving water molecules, creates a more favorable hydrogen bonding environment for carbohydrate ligands. The Lys-203 side chain reorients as well, extending outward into the solvent in the complexes, thereby opening up a small cation-friendly cavity occupied by a sodium ion. Binding of this cation brings the large loop, which forms one wall of the lectin site, and the adjacent small loop closer together. The ability to undergo conformational changes may help SP-A adapt to different ligand classes, including microbial glycolipids and surfactant lipids.  相似文献   

16.
The recognition of pathogens is mediated by a set of pattern recognition molecules that recognize conserved pathogen-associated molecular patterns shared by broad classes of microorganisms. Mannose-binding lectin (MBL) is one of the pattern recognition molecules and activates complement in association with MBL-associated serine protease (MASP) via the lectin pathway. Recently, an MBL-like lectin was isolated from the plasma of a urochordate, the solitary ascidian. This ascidian lectin has a carbohydrate recognition domain, but the collagen-like domain was replaced by another sequence. To elucidate the origin of MBLs, the aim of this study is to determine the structure and function of the MBL homolog in lamprey, the most primitive vertebrate. Using an N-acetylglucosamine (GlcNAc)-agarose column, MBL-like lectin (p25) was isolated from lamprey serum and cDNA cloning was conducted. From the deduced amino acid sequence this lectin has a collagenous region and a typical carbohydrate recognition domain. This lectin also binds mannose, glucose, and GlcNAc, but not galactose, indicating that it is structurally and functionally similar to the mammalian MBLs. Furthermore, it associated with lamprey MASPs, and the MBL-MASP activated lamprey C3 in fluid-phase and on the surface of pathogens. In conjunction with the phylogenetic analysis, it seems likely that the lamprey MBL is an ortholog of the mammalian MBL. Because acquired immunity seems to have been established only from jawed vertebrates onward, the lectin complement pathway in lamprey, as one of the major contributors to innate immunity, plays a pivotal role in defending the body against microorganisms.  相似文献   

17.
Traditional methods for identifying food-borne pathogens are time-consuming and laborious, so it is necessary to develop innovative methods for the rapid identification of food-borne pathogens. Here, we report the development of silicon-based optical thin-film biosensor chips for sensitive detection of 11 food-borne pathogens. Briefly, aldehyde-labeled probes were arrayed and covalently attached to a hydrazine-derivatized chip surface, and then, biotinylated polymerase chain reaction (PCR) amplicons were hybridized with the probes. After washing and brief incubation with an antibiotin immunoglobulin G–horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate, biotinylated chains bound to the probes were visualized as a color change on the chip surface (gold to blue/purple). Highly sensitive and accurate examination of PCR fragment targets can be completed within 30 min. This assay is extremely robust, sensitive, specific, and economical and can be adapted to different throughputs. Thus, a rapid, sensitive, and reliable technique for detecting 11 food-borne pathogens was successfully developed.  相似文献   

18.
Lectins are able to recognize specific carbohydrate structures through their carbohydrate recognition domain (CRD). The lectin from the mushroom Agaricus bisporus (ABL) has the remarkable ability of selectively recognizing the TF-antigen, composed of Galβ1-3GalNAc, Ser/Thr linked to proteins, specifically exposed in neoplastic tissues. Strikingly, the recently solved crystal structure of tetrameric ABL in the presence of TF-antigen and other carbohydrates showed that each monomer has two CRDs, each being able to bind specifically to different monosaccharides that differ only in the configuration of a single hydroxyl, like N-acetyl-d-galactosamine (GalNAc) and N-acetyl-d-glucosamine (GlcNAc). Understanding how lectin CRDs bind and discriminate mono and/or (poly)-saccharides is an important issue in glycobiology, with potential impact in the design of better and selective lectin inhibitors with potential therapeutic properties. In this work, and based on the unusual monosaccharide epimeric specificity of the ABL CRDs, we have performed molecular dynamics simulations of the natural (crystallographic) and inverted (changing GalNAc for GlcNAc and vice-versa) ABL–monosaccharide complexes in order to understand the selective ligand recognition properties of each CRD. We also performed a detailed analysis of the CRD local solvent structure, using previously developed methodology, and related it with the recognition mechanism. Our results provide a detailed picture of each ABL CRD specificity, allowing a better understanding of the carbohydrate selective recognition process in this particular lectin.  相似文献   

19.
We examined the carbohydrate-binding potential of the C-type lectin-like receptor Dectin-2 (Clecf4n). The carbohydrate-recognition domain (CRD) of Dectin-2 exhibited cation-dependent mannose/fucose-like lectin activity, with an IC(50) for mannose of approximately 20 mM compared to an IC(50) of 1.5 mM for the macrophage mannose receptor when assayed by similar methodology. The extracellular domain of Dectin-2 exhibited binding to live Candida albicans and the Saccharomyces-derived particle zymosan. This binding was completely abrogated by cation chelation and was competed by yeast mannans. We compared the lectin activity of Dectin-2 with that of two other C-type lectin receptors (mannose receptor and SIGNR1) known to bind fungal mannans. Both mannose receptor and SIGNR1 were able to bind bacterial capsular polysaccharides derived from Streptococcus pneumoniae, but interestingly they exhibited distinct binding profiles. The Dectin-2 CRD exhibited only weak interactions to some of these capsular polysaccharides, indicative of different structural or affinity requirements for binding, when compared with the other two lectins. Glycan array analysis of the carbohydrate recognition by Dectin-2 indicated specific recognition of high-mannose structures (Man(9)GlcNAc(2)). The differences in the specificity of these three mannose-specific lectins indicate that mannose recognition is mediated by distinct receptors, with unique specificity, that are expressed by discrete subpopulations of cells, and this further highlights the complex nature of carbohydrate recognition by immune cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号