首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Undergraduate biology majors require biological literacy about the critical and dynamic relationships between plants and ecosystems and the effect human-made processes have on these systems. To support students in understanding systems relationships, we redesigned an undergraduate botany course using an ecological framework and embedded systems modelling to support students in understanding the criticality of plant processes to the global carbon cycle. The class meetings included lectures, opportunities to develop systems models identifying the relationships between plant processes and other systems, reflections on their systems understanding and open-floor discussions about assigned primary and secondary readings that explored the relationships between plant systems, abiotic and biotic processes and global carbon cycling in their systems models. We used the systems models students developed at the beginning and end of the course to examine how their systems understanding grew. Our results suggest that at the beginning of term, students’ ideas about plants were egocentric identifying the purpose of plants was to support human life and they did not consider relationships between plants and global carbon systems. By the end of the term, their models and reflections identified elements of a systems perspective and the students considered human impact on this delicate balance.  相似文献   

2.

Background

ePrescribing systems have considerable potential for improving healthcare quality and safety. With growing expectations about the benefits of such systems, there is evidence of widespread plans to implement these systems in hospitals in England where hitherto they have had a low uptake. Given the international drive away from developing home-grown to systems to procuring commercial applications, we aimed to identify available ePrescribing systems in England and to use the findings to develop a taxonomy of the systems offered by suppliers.

Methods and Findings

We undertook a scoping review of the published and grey literature, and conducted expert interviews with vendors, healthcare organisations and national ePrescribing experts in order to identify the spectrum of available systems, identify and map their key features, and then iteratively develop and validate a taxonomy of commercial ePrescribing systems available to English hospitals. There is a wide range of available systems including 13 hospital-wide applications and a range of specialty systems. These commercial applications can be grouped into four sub-categories: standalone systems, modules within integrated systems, functionalities spread over several modules, and specialty systems. The findings also reveal that apart from four packaged applications (two of which are specialty systems), all other systems have none or less than two live implementations across England.

Conclusions

The wide range of products developed in the last few years by different national and international suppliers, and the low uptake of these products by English hospitals indicate that the English ePrescribing market is still in its infancy. This market is undergoing rapid cycles of change, both with respect to the number of suppliers and their diversity of offerings. Constant renewal of knowledge is needed on the status of this evolving market, encompassing the products development and adoption, to assist implementation decisions and facilitate market maturity.  相似文献   

3.
Restriction-modification (RM) systems are cognate gene complexes that code for an endonuclease and a methylase. They are often thought to have developed in bacteria as protection against invading genetic material, e.g., phage DNA. The high diversity of RM systems, as observed in nature, is often ascribed to the coevolution of RM systems (which ‘invent’ novel types) and phages. However, the extent to which phages are insensitive to RM systems casts doubts on the effectiveness of RM systems as protection against infection and thereby on the reason for the diversity of RM systems. We present an eco-evolutionary model in order to study the evolution of the diversity of RM systems. The model predicts that in general diversity of RM systems is high. More importantly, the diversity of the RM systems is expressed either at the individual level or at the population level. In the first case all individuals carry RM systems of all sequence specificities, whereas in the second case they carry only one RM system or no RM systems at all. Nevertheless, in the second case the same number of sequence specificities are present in the population.  相似文献   

4.
Motivated by studies on the dynamics of heterogeneously interacting systems in neocortical neural networks, we studied heterogeneously-coupled chaotic systems. We used information-theoretic measures to investigate directions of information flow in heterogeneously coupled Rössler systems, which we selected as a typical chaotic system. In bi-directionally coupled systems, spontaneous and irregular switchings of the phase difference between two chaotic oscillators were observed. The direction of information transmission spontaneously switched in an intermittent manner, depending on the phase difference between the two systems. When two further oscillatory inputs are added to the coupled systems, this system dynamically selects one of the two inputs by synchronizing, selection depending on the internal phase differences between the two systems. These results indicate that the effective direction of information transmission dynamically changes, induced by a switching of phase differences between the two systems.  相似文献   

5.
The role of expert systems functioning as process controllers in learning image understanding systems is discussed. Numeric learning systems already have found a number of applications in cytologic and histopathologic diagnosis. Depending on the required capabilities, systems of increasing complexity are needed. Expert systems to guide scene segmentation in histopathologic imagery require model-based reasoning. Diagnostic image interpretation with learning capability demands a full model of the human expert's competence, including a considerable variety of knowledge representation schemes and inference strategies, coordinated by a meta-process controller.  相似文献   

6.
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?  相似文献   

7.
Systems involving many interacting variables are at the heart of the natural and social sciences. Causal language is pervasive in the analysis of such systems, especially when insight into their behavior is translated into policy decisions. This is exemplified by economics, but to an increasing extent also by biology, due to the advent of sophisticated tools to identify the genetic basis of many diseases. It is argued here that a regularity notion of causality can only be meaningfully defined for systems with linear interactions among their variables. For the vastly more important class of nonlinear systems, no such notion is likely to exist. This thesis is developed with examples of dynamical systems taken mostly from mathematical biology. It is discussed with particular reference to the problem of causal inference in complex genetic systems, systems for which often only statistical characterizations exist.  相似文献   

8.
《Hormones and behavior》2008,53(5):561-570
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?  相似文献   

9.
10.
Autophagosome formation and maturation involve the two ubiquitin-like systems: The ATG8 and ATG12 systems. ATG8 (LC3s and gamma-aminobutyric acid receptor–associated proteins in mammals) and ATG12 are covalently conjugated to phosphatidylethanolamine and ATG5, respectively. Although the ATG12 and ATG8 systems were discovered more than 20 years ago, their molecular functions are not fully understood. The aim of this review is to summarize recent findings related to ATG conjugation systems, focusing on current controversies regarding the genetic hierarchy of these systems, interpretation of conjugation-independent alternative macroautophagy, the differences in roles between LC3s and gamma-aminobutyric acid receptor–associated proteins in autophagosome formation and cargo recognition, and evolution of these systems.  相似文献   

11.
Two-component systems that link environmental signals to cellular responses are viewed as the primary mode of signal transduction in prokaryotes. By analyzing information encoded by 145 prokaryotic genomes, we found that the majority of signal transduction systems consist of a single protein that contains input and output domains but lacks phosphotransfer domains typical of two-component systems. One-component systems are evolutionarily older, more widely distributed among bacteria and archaea, and display a greater diversity of domains than two-component systems.  相似文献   

12.
13.
Dithiobis (2-nitrobenzoic acid)-resistant and -sensitive glycerophosphate acyltransferase systems were present in rat lung as in liver. The former was specific for palmitate while the latter could incorporate saturated and unsaturated acyl-CoAs comparably. The former has higher affinity for palmitate than the latter indicating that the 1-position of glycerophosphate can be acylated selectively with palmitate under certain conditions. The specificities of 1-acylglycerophosphate and 1-acylglycerophosphocholine acyltransferase systems were similar in lung and liver; both systems showed higher specificities for unsaturated acyl-CoAs. However, the selectivities observed at lower concentrations of phospholipid acceptors in the presence of equimolar mixtures of saturated and unsaturated acyl-CoAs were much different; the lung systems showed relatively higher selectivities for palmitate than the liver systems in the formation of both diacylglycerophosphate and phosphatidylcholine. On the other hand, palmitate was excluded almost completely from the 2-position in the 1-acylglycerophosphoethanolamine acyltransferase systems in lung and liver. These observations provide an enzymatic basis for describing the formation of pulmonary surfactant lipids in rat via acyltransferase systems.  相似文献   

14.
An increasing number of aging researchers believes that multi‐system physiological dysregulation may be a key biological mechanism of aging, but evidence of this has been sparse. Here, we used biomarker data on nearly 33 000 individuals from four large datasets to test for the presence of multi‐system dysregulation. We grouped 37 biomarkers into six a priori groupings representing physiological systems (lipids, immune, oxygen transport, liver function, vitamins, and electrolytes), then calculated dysregulation scores for each system in each individual using statistical distance. Correlations among dysregulation levels across systems were generally weak but significant. Comparison of these results to dysregulation in arbitrary ‘systems’ generated by random grouping of biomarkers showed that a priori knowledge effectively distinguished the true systems in which dysregulation proceeds most independently. In other words, correlations among dysregulation levels were higher using arbitrary systems, indicating that only a priori systems identified distinct dysregulation processes. Additionally, dysregulation of most systems increased with age and significantly predicted multiple health outcomes including mortality, frailty, diabetes, heart disease, and number of chronic diseases. The six systems differed in how well their dysregulation scores predicted health outcomes and age. These findings present the first unequivocal demonstration of integrated multi‐system physiological dysregulation during aging, demonstrating that physiological dysregulation proceeds neither as a single global process nor as a completely independent process in different systems, but rather as a set of system‐specific processes likely linked through weak feedback effects. These processes – probably many more than the six measured here – are implicated in aging.  相似文献   

15.
Regulated adeno-associated virus (AAV) vectors have broad utility in both experimental and applied gene therapy, and to date, several regulation systems have exhibited a capability to control gene expression from viral vectors over two orders of magnitude. The tetracycline responsive system has been the most used in AAV, although other regulation systems such as RU486- and rapamycin-responsive systems are reasonable options. AAV vectors influence how regulation systems function by several mechanisms, leading to increased background gene expression and restricted induction. Methods to reduce background expression continue to be explored and systems not yet tried in AAV may prove quite functional. Although regulated promoters are often assumed to exhibit ubiquitous expression, the tropism of different neuronal subtypes can be altered dramatically by changing promoters in recombinant AAV vectors. Differences in promoter-directed tropism have significant consequences for proper expression of gene products as well as the utility of dual vector regulation. Thus regulated vector systems must be carefully optimized for each application.  相似文献   

16.
Collective motions of animals that move towards the same direction is a conspicuous feature in nature. Such groups of animals are called a self-propelled agent (SPA) systems. Many studies have been focused on the synchronization of isolated SPA systems. In real scenarios, different SPA systems are coupled with each other forming a network of SPA systems. For example, a flock of birds and a school of fish show predator-prey relationships and different groups of birds may compete for food. In this work, we propose a general framework to study the collective motion of coupled self-propelled agent systems. Especially, we study how three different connections between SPA systems: symbiosis, predator-prey, and competition influence the synchronization of the network of SPA systems. We find that a network of SPA systems coupled with symbiosis relationship arrive at a complete synchronization as all its subsystems showing a complete synchronization; a network of SPA systems coupled by predator-prey relationship can not reach a complete synchronization and its subsystems converges to different synchronized directions; and the competitive relationship between SPA systems could increase the synchronization of each SPA systems, while the network of SPA systems coupled by competitive relationships shows an optimal synchronization for small coupling strength, indicating that small competition promotes the synchronization of the entire system.  相似文献   

17.
Among the signal transfer systems in bacteria two types predominate: two-component regulatory systems and quorum sensing systems. Both types of system can mediate signal transfer across the bacterial cell envelope; however, the signalling molecule typically is not taken up into the cells in the former type of system, whereas it usually is in the latter. The Two-component systems include the recently described (eukaryotic) phosphorelay systems; quorum sensing systems can be based upon autoinducers of the N-acylated homoserine lactones, and on autoinducers of a peptidic nature. A single bacterial cell contains many signalling modules that primarily operate in parallel. This may give rise to neural-network behaviour. Recently, however, for both types of basic signal transfer modules, it has been demonstrated that they also can be organised in series (i.e. in a hierarchical order). Besides their hierarchical position in the signal transduction network of the cell, the spatial distribution of individual signalling modules may also be an important factor in their efficiency in signal transfer. Many challenges lie hidden in future work to understand these signal transfer processes in more detail. These are discussed here, with emphasis on the mutual interactions between different signal transfer processes. Successful contributions to this work will require rigorous mathematical modelling of the performance of signal transduction components, and -networks, as well as studies on light-sensing signal transduction systems, because of the unsurpassed time resolution obtainable in those latter systems, the opportunity to apply repeated reproducible stimuli, etc. The increased understanding of bacterial behaviour that already has resulted – and may further result – from these studies, can be used to fine-tune the beneficial activities of bacteria and/or more efficiently inhibit their deleterious ones.  相似文献   

18.
19.
20.
Many real ecological systems show sudden changes in behavior, phenomena sometimes categorized as regime shifts in the literature. The relative importance of exogenous versus endogenous forces producing regime shifts is an important question. These forces’ role in generating variability over time in ecological systems has been explored using tools from dynamical systems. We use similar ideas to look at transients in simple ecological models as a way of understanding regime shifts. Based in part on the theory of crises, we carefully analyze a simple two patch spatial model and begin to understand from a mathematical point of view what produces transient behavior in ecological systems. In particular, since the tools are essentially qualitative, we are able to suggest that transient behavior should be ubiquitous in systems with overcompensatory local dynamics, and thus should be typical of many ecological systems. This work has been supported by NSF Grant EF-0434266.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号