首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.  相似文献   

2.
A bacterial artificial chromosome (BAC) library was constructed for the genome of the rhizosphere-inhabiting fluorescent pseudomonad Pseudomonas synxantha BG33R. Three thousand BAC clones with an average insert size of 140 kbp and representing a 70-fold genomic coverage were generated and arrayed onto nylon membranes. EcoRI fingerprint analysis of 986 BAC clones generated 23 contigs and 75 singletons. Hybridization analysis allowed us to order the 23 contigs and condense them into a single contig, yielding an estimated genome size of 5.1 Mb for P. synxantha BG33R. A minimum-tile path of 47 BACs was generated and end-sequenced. The genetic loci involved in ring nematode egg-kill factor production in BG33R Tn5 mutants, 246 (vgrG homolog), 1122 (sensor kinase homolog), 1233 (UDP-galactose epimerase homolog), 1397 (ferrisiderophore receptor homolog), and 1917 (ribosomal subunit protein homolog), have been mapped onto the minimum-tile BAC library. Two of the genetic regions that flank Tn5 insertions in BG33R egg-kill-negative mutants 1233 and 1397 are separated by a single BAC clone. Fragments isolated by ligation-mediated PCR of the Tn5 mutagenized regions of 29 randomly selected, non-egg-kill-related, insertion mutants have been anchored onto the ordered physical map of P. synxantha.  相似文献   

3.
Greenhouse experiments were conducted to examine competition between Tylenchorhynchus annulatus and Mesocriconema xenoplax on grain sorghum roots that were colonized by the fungus Macrophomina phaseolina or free from fungus colonization. An incomplete factorial treatment design consisted of two levels of M. phaseolina (0 or 10 colony-forming units/g soil) and 12 T. annulatus:M. xenoplax ratios: 1,000:0; 750:0; 500:0; 250:0; 0:0; 0:250; 0:500; 0:750; 0:1,000; 750:250; 500:500; and 250:750. Plants were harvested after 105 days. Despite similar feeding habits, competition between these ectoparasitic nematode species was limited. Tylenchorhynchus annulatus was more susceptible to antagonism by M. xenoplax than the reverse, but susceptibility depended on initial inoculum ratio. Root colonization by M. phaseolina reduced competitive effects of T. annulatus on M. xenoplax but not the reverse. Both nematode species reduced shoot dry weight but only T. annulatus reduced root dry weight. Both plant weight parameters were reduced by M. phaseolina.  相似文献   

4.
Previous surveys of vineyards had indicated that Mesocriconema xenoplax was present in 85% of vineyards in western Oregon, but yields were not depressed in established vines. Microplot studies were initiated in 1997 in a Willamette Valley vineyard to determine the impact of M. xenoplax on vine establishment. Plots were infested with 0.03, 0.6, and 3.0 M. xenoplax g-1 soil and planted with self-rooted Chardonnay and Pinot Noir vines. In November 2000, four growing seasons after planting, pruning weights, fine root weights, and fruit yield of vines planted in infested soil were reduced by 58%, 75%, and 33%, respectively, relative to control vines (planted in noninfested soil). In 1998 with ca 2000 degree-day base 9 °C accumulation, population densities increased 32-fold and 44-fold on 1-year-old Chardonnay and Pinot Noir vines, respectively. Nematode population dynamics and pruning data suggested that the carrying capacity of vines in microplots was 5 to 8 M. xenoplax g-1 soil. In November 2000, more than 80% of the fine root length was colonized by arbuscular mycorrhizal fungi in all treatments. The frequency of fine roots containing arbuscules (the site of nutrient transfer between plant and fungus), however, was depressed from 5% to 65% in plants infested initially with M. xenoplax as compared to controls. Competition for photosynthate within the root system is proposed as a possible mechanism by which nematodes suppressed arbuscule frequency.  相似文献   

5.
The Mesocriconema xenoplax population increased exponentially in a newly planted peach orchard. The rate of increase was greater on Nemaguard than on Lovell rootstock and was reduced by postplant nematicides. Population levels were more stable in an established almond orchard on Nemaguard rootstock. All life stages of the nematode were present year round; lower ratios of juveniles to adults in summer suggested adverse effects of temperature and dry soil. Also in summer, there was a smaller proportion of the population in the upper 30 cm of soil than at greater depths. Nematode dosage, average nematode density multiplied by accumulated degree-days (physiological time) of the sampling interval, was useful in quantifying nematode stress on trees and as an indicator of the nematode management effectiveness. The annual trajectory of the nematode dosage could be determined by two samplings, one in spring and one in fall. A nematode predator, the parasitic fungus Hirsutella rhossiliensis, did not regulate ring nematode populations in the newly planted orchard; a recovery period was necessary for increase in the prevalence of parasitism.  相似文献   

6.
The interaction between Meloidogyne incognita and Criconemella xenoplax on nematode reproduction and growth of Lovell peach was studied in field microlots and the greenhouse. Meloidogyne incognita suppressed reproduction of C. xenoplax in both field and greenhouse experiments. Tree growth, as measured by trunk diameter, was reduced (P ≤ 0.05) in the presence of M. incognita as compared with C. xenoplax of the uninoculated control trees 26 months following inoculation. A similar response regarding dry root weight was also detected in greenhouse-grown seedlings after 5 months. The presence of C. xenoplax did not affect Lovell tree growth. A synergistic effect causing a reduction (P ≤ 0.05) in tree growth was recorded 26 and 38 months following inoculation. The presence of M. incognita increased levels of malonyl-1-aminocyclopropane-1-carboxylic acid content in leaves of trees grown in field microplots 19 months after inoculaoon. Meloidogyne incognita appears to be a more dominant parasite than C. xenoplax on Lovell peach.  相似文献   

7.
We tested the hypothesis that isolates of Hirsutella rhossiliensis from host nematodes in the family Hoplolaimidae (Rotylenchus robustus and Hoplolaimus galeatus) would be more virulent to R. robustus than would isolates from host nematodes not in the Hoplolaimidae (Heterodera schachtii and Criconemella xenoplax). Nematodes were touched to 10-20 spores of different isolates and incubated at 20 C in 4.5 mM KC1; the percentage of nematodes colonized (filled with hyphae) was determined after 2, 5, 10, 20, and 30 days. The hypothesis was rejected because isolates from H. schachtii and C. xenoplax were equivalent or better at parasitizing R. robustus than were isolates from R. robustus and H. galeatus. In addition, the R. robustus and H. galeatus isolates were as pathogenic to C. curvata as they were to R. robustus, but produced fewer spores per colonized nematode (H. schachtii) than did the other isolates.  相似文献   

8.
Methods were developed for screening Prunus selections for host suitability to Criconemella xenoplax. The relative host suitability of selections was based upon a doubling accumulation value (β) that was defined as the number of degree-days (base 9 C) required for doubling of an increment of the initial nematode population. The β value characteristic for C. xenoplax (139 ± 8 degree-days) on suitable hosts was similar to the average β value determined for several peach rootstocks known to be suitable hosts. The β values were 144 ± 21 for Halford, 141 ± 16 for Lovell, and 138 ± 10 for Nemaguard. A higher value for β could indicate poorer host suitability or resistance of a selection to C. xenoplax. All of 369 Prunus accessions tested, including eight accessions that had survived well on a field site infested with C. xenoplax, were suitable hosts. Apparently, resistance to C. xenoplax was not a factor in survival of the accessions planted in the field. Seedlings from P. besseyi, P. pumila ''Mando'', and two interspecific hybrids, Redcoat and Sapalta IR 549-1, failed to support nematode population increase in 44-81% of tests conducted, but all selections supported population increase in some tests. These accessions may have resistance mechanisms that are active only under specific conditions.  相似文献   

9.
Concord grape (Vitis labrusca) plants were inoculated with Macroposthonia xenoplax at levels of 100, 1,000, and 10,000 nematodes. After 4 months, plants inoculated with 10,000 M. xenoplax were stunted, and root systems were darker and had fewer feeder roots than those in other treatments. The lower nematode inoculation levels suppressed top growth but did not affect root growth. M. xenoplax reproduced well on Concord grapes.  相似文献   

10.
A degree-day model was derived to predict egg hatch for Criconemella xenoplax. Eggs collected from gravid females were incubated in distilled water at constant temperatures of 10-35 C. Sixty-six percent of all eggs hatched between 13 and 32 C, and 42% hatched at 10 C. All eggs aborted above 32.5 C. Between 25 and 32 C, 8.5 ± 0.5 days were required for egg hatch. Degree-day requirement for egg hatch at 10-30 C was estimated to be 154 ± 5 with a base of 9.03 ± 0.04 C. This base of 9 C was adopted in studies of the relationship between degree-days and nematode population increase on Prunus seedlings grown 9-11 weeks in a greenhouse. Degree-day accumulations were based upon daily averages from maximum and minimum air temperatures. Ratios of final to initial population densities exhibited an exponential pattern in relation to degree-day accumulations with proportionate doubling increment of 0.100 ± 0.049 every 139 ± 8 degree-days. These results provide a means of predicting nematode population increase under greenhouse conditions and a basis for choosing sampling intervals when evaluating nematode multiplication.  相似文献   

11.
Percentage of mortality, growth suppression, and changes in free amino acid and reducing sugar content in root and (or) stem tissue of Nemaguard peach seedlings were studied in the greenhouse in relation to time and eight different initial population densities (Pi) of Criconemella xenoplax. After 90 and 180 days, free amino acid content in root tissue significantly increased with increasing nematode numbers. Suppression of root volume, dry root and stem weight, height increase, plant survival, and content of reducing sugars in root tissue were detected at 180 and 270 days and following pruning. All criteria were negatively correlated with nematode Pi. Changes in growth, metabolic parameters, and survival percentage were attributed to Pi density of C. xenoplax, duration of the experiment, and nematode reproduction rate.  相似文献   

12.
Elimination of Criconemoides xenoplax from a prune orchard soil by fumigation with ethylene dibromide at the rate of 42 μliter/liter of soil (equivalent to about 13 gal/acre) improved the growth of Myrobalan plum, Addition of this nematode to Myrobalan seedlings or young ''Marianna 2624'' plants propagated from cuttings resulted in destruction of cortical root tissue, darkening of roots, alteration of water stress, lowering of nutrient levels in leaves, and reduction in plant weight. C. xenoplax increased on all nine Prunus cerasifera varieties and hybrids tested, including those used commonly as rootstocks for prunes and plums. Rhizoctonia solani isolated from Myrobalan seedlings infected with C. xenoplax caused lesions on the hypocotyls of young Myrobalan seedlings in the laboratory, but had no effect on older seedlings in the greenhouse, and did not alter the effect of C. xenoplax.  相似文献   

13.
In two of three trials, detectable color reactions in ELISA for Prunus necrotic ringspot virus (PNRSV) were observed for Criconemella xenoplax handpicked from the root zone of infected peach trees. Criconemella xenoplax (500/pot) handpicked from root zones of peach trees infected with PNRSV failed to transmit the virus to cucumber or peach seedlings. The nematode also failed to transmit tomato ringspot (TomRSV) or tobacco ringspot viruses between cucumbers, although Xiphinema americanum transmitted TomRSV under the same conditions. Plants of peach, cucumber, Chenopodium quinoa, and Catharanthus roseus were not infected by PNRSV when grown in soil containing C. xenoplax collected from root zones of PNRSV-infected trees. Shirofugen cherry scions budded on Mazzard cherry seedling rootstocks remained symptomless when transplanted into root zones of PNRSV-infected trees. Virus transmission was not detected by ELISA when C. xenoplax individuals were observed to feed on cucumber root explants that were infected with PNRSV and subsequently fed on roots of Prunus besseyi in agar cultures. Even if virus transmission by C. xenoplax occurs via contamination rather than by a specific mechanism, it must be rare.  相似文献   

14.
Microplot experiments were established in 1992, 1993, and 1994 to investigate the relationships among Macrophomina phaseolina, Criconemella xenoplax, mad Tylenchorhynchus annulatus on grain sorghum in Louisiana. A factorial treatment arrangement of two grain sorghum hybrids (De Kalb DK 50 and Pioneer hybrid 8333), three levels of M. phaseolina (0, 10, and 100 colony-forming units (CFU)/g soil), and three nematode inoculum levels (0, 1x, and 2x) were used. Nematode inocula at 1x levels were 929, 1,139, and 1,445 C. xenoplax and T. annulatus/microplot in 1992, 1993, and 1994, respectively. Plants were harvested after 90-105 days. In all 3 years, grain sorghum root and head dry weights were suppressed as nematode inoculum level increased. These reductions were detected both in the absence and in the presence of M. phaseolina at 10 CFU/g. Reproduction of both nematode species was suppressed by M. phaseolina. Interactions between M. phaseolina and nematodes were antagonistic with regard to plant dry weights, yield, and nematode reproduction, so that combined effects were less than the sum of the effect of each pathogen alone.  相似文献   

15.
Populations of Mesocriconema curvatum, M. kirjanovae, M. onoense, M. ornatum, M. sphaerocephala, M. surinamense, M. vadense, M. xenoplax, and Criconemoides informis from different geographical areas in the continental United States were characterized morphologically and molecularly. A new ring nematode from Washington County, Arkansas, is also described and named Mesocriconema ozarkiense n. sp., This new species is characterized by females with small flattened submedian lobes, lower than or at the same level as the labial disc, vagina straight, very well developed spermatheca without sperm, no more than one anastomoses, L=379-512 μm, V=89-93, stylet length = 49-61 μm, R=107-119, annuli with slightly crenate margins on tail portion and a simple anterior vulval lip. The molecular characterization of M. ozarkiense n. sp. using the ITS rRNA gene sequence and the phylogenesis relationship of this new species with the ring nematodes included in this study are provided.  相似文献   

16.
Criconemoides xenoplax and Meloidogyne incognita were the nematode species most frequently associated with peach in North Carolina. Other nematodes often found in high numbers on that crop were Pratylenehus vulnus, Helicotylenchus spp., Trichodorus christiei, Xiphinema amerieanum and Tylenchorhynchus claytoni. P. vulnus and P. penetrans reproduced well on rootstocks of 21 peach cultivars tested in the greenhouse. P. zeae, P. brachyurus, P. coffeae and P. scribneri decreased or increased only slightly in most instances. C. xenoplax increased as much as 330-fold and reproduced on all cultivars tested. In a field experiment with six peach cultivars and moderate numbers of P. brachyurus, P. vulnus, C. xenoplax, and M. incognita, only M. incognita caused significant stunting in 30 months. This nematode increased only on root-knot susceptible cultivars, whereas the other nematodes followed the same patterns observed in the greenhouse. In a second field experiment, seedlings were stunted significantly by high numbers of C. xenoplax during an 18-month period.  相似文献   

17.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.  相似文献   

18.
Various fluorescent conjugated lectins have been used for the detection of glycoconjugates on nematode surfaces under light microscopy. Several problems have been experienced with these reagents including penetration of the cuticle by fluorescent lectins, non-glycoconjugate specificity, strong nematode autofluorescence at the emission wavelength of the fluorescent dye, and prevention of persistent visualization due to rapid quenching of the fluorescent components. Gold-conjugated reagents combined with silver enhancement alleviated these difficulties when working with three phytonematode species (Heterodera avenae, H. latipons, and Meloidogyne javanica) and two entomopathogenic species (Steinernema carpocapsae and S. glaseri) under light-microscopy visualization of binding by fluorescent lectins and neoglycoproteins. Moreover, gold-conjugated reagents resulted in stable bindings that enabled long-term observations.  相似文献   

19.
Fall annual leaf senescence of peach was delayed in the field and in microplots in the presence of Criconemella xenoplax. Soil from the rhizosphere of orchard trees with greener leaves had ca. 2.5 × more nematodes than soil around trees in a more advanced state of fall senescence. In microplots, monoclonal antibody enzyme immunoassay (EIA) of leaf cytokinins indicated that concentration of zeatin riboside-like substances and chlorophyll content were greater in leaves of trees growing in nematode-infested soil than in trees in uninfested soil. EIA also indicated the presence of substances resembling trans-zeatin, zeatin riboside, dihydrozeatin, and dihydrozeatin riboside-like substances in whole body homogenates of C. xenoplax. Levels of zeatin-like substances were present in the nematode in greater levels than the other related substances.  相似文献   

20.
Endoparasitic nematode populations are usually measured separately for soil and roots without a determination of the quantitative relation between soil and root population components. In this study, Pratylenchus penetrans populations in peppermint soil, roots, and rhizomes were expressed as the density within a standardized core consisting of 500 g dry soil plus the roots and rhizomes contained therein. Populations of Paratylenchus sp. and Criconemella xenoplax in 500 g dry soil were also determined, thus measuring the total plant-parasitic nematode population associated with the plant. Mean wet root weight per standard core peaked in spring and again in late summer and was lowest early in the growing season and in early fall. Pratylenchus penetrans populations peaked 4 to 6 weeks after root weight peaks. The percentage of the total population in roots reached 70% to 90% in early April, decreased to 20% to 40% in August, and returned to higher percentages during the winter. Rhizomes never contained more than a minor proportion of the population. Mean Paratylenchus sp. populations increased through spring and peaked in late August. Mean C. xenoplax populations fluctuated, peaking in August or September. Populations of all parasitic species were lowest during winter. Evaluation using the standard core method permits assessment of the total P. penetrans population associated with the plant and of changes in root weight as well as the seasonal distribution of P. penetrans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号