首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The response of Chinese hamster ovary cells in which 10 per cent of the thymine of one DNA strand was substituted with bromouracil (BU) was compared with normal cells following u.v. irradiation. The bromouracil substitution resulted in a 21/2 fold enhancement of both u.v.-induced killing and mutation induction at the HGPRT locus. These BU-photoproducts do not, however, result in any further inhibition of DNA replication or inhibition of the repair of u.v.-induced DNA photoproducts identified as antibody-binding sites.  相似文献   

2.
Radioimmunoassays that detect pyrimidine-pyrimidone (6-4) photoproducts and cyclobutane dimers were used to determine the relative induction of these photoproducts in nucleosomal (core) and internucleosomal (linker) DNA in human cell chromatin irradiated with UV light. Cyclobutane dimers were formed in equal amounts/nucleotide in core and linker DNA, whereas (6-4) photoproducts occurred with 6-fold greater frequency/nucleotide in linker DNA.  相似文献   

3.
4.
5.
Origin of ultraviolet damage in DNA   总被引:12,自引:0,他引:12  
A novel ultraviolet (u.v.) footprinting technique has been used to analyze the formation of u.v. photoproducts at 250 bases of a 5 S rRNA gene under conditions where the gene is either double or single-stranded. Because many more types of u.v. damage can be detected by the u.v. footprinting technique than has been previously possible, we have been able to examine in detail why certain bases in DNA are damaged by u.v. light while others are not. Our measurements demonstrate that the ability of u.v. light to damage a given base in DNA is determined by two factors, the sequence of the DNA in the immediate vicinity of the photoproduct, and the flexibility of the DNA at the site of the photoproduct. For pyrimidines, the predominant photoreaction in double-stranded DNA involves covalent dimerization between adjacent pyrimidine residues. Dimerization is much easier in melted DNA because the geometrical changes required for adjacent pyrimidine residues to dimerize are easier in single-stranded DNA. The absorption of a u.v. photon cannot simultaneously induce the geometrical changes required for adjacent pyrimidines or other bases to dimerize with one another. Rather, upon the absorption of a u.v. photon, only those thermally excited bases that are in a geometry capable of easily forming a photodimer during excitation, can photoreact. In contrast to adjacent pyrimidines, non-adjacent pyrimidines (pyrimidines flanked on either side by a purine) do not readily form u.v. photoproducts in double-stranded DNA. Because photoreactions at non-adjacent pyrimidine residues are greatly enhanced in single-stranded DNA, their failure to form in double-helical DNA is attributed to torsional constraints imposed by the double helix which make it difficult for non-adjacent pyrimidines to adopt a geometry necessary for photoreaction. Although purines are believed to be resistant to u.v. damage, our measurements demonstrate that at moderate u.v. dosages purines which are flanked on their 5' side by two or more contiguous pyrimidines readily form u.v. photoproducts in double-stranded DNA. Flanking pyrimidines appear to activate purine photoreactions by transferring triplet excitation energy to the purine. Melting of the DNA helix greatly inhibits the ability of flanking pyrimidines to activate purine photoreactions, presumably by disrupting intimate orbital overlap required for triplet transfer.  相似文献   

6.
7.
8.
9.
10.
11.
The survival of u.v.-irradiated human cytomegalovirus (HCMV) on u.v.-irradiated human IAFP-1 cells was increased over that on unirradiated cells. Irradiated virus had a higher forward mutation frequency towards temperature sensitivity in irradiated than in unirradiated cells. Enhanced reactivation of u.v.-irradiated HCMV is thus mutagenic in normal human cells. This observation supports the possible induction of an error-prone mode of DNA repair in u.v.-irradiated mammalian cells.  相似文献   

12.
13.
14.
Biological studies suggest that a significant proportion of the cytotoxicity observed in mammalian cells after uv irradiation may be due to damage other than cyclobutane dimers in DNA. Although pyrimidine-pyrimidone (6-4) photoproducts have been implicated as major contributors to cell lethality, their induction has been measured at considerably less than cyclobutane pyrimidine dimers when measured by chromatographic techniques. Because the yield of (6-4) photoproducts may be reduced by their lability to extreme heat and pH, we have advised an alternative, immunological quantification which does not require DNA hydrolysis. Affinity-purified rabbit antisera were used to precipitate low molecular weight 32P-labeled PM2 DNA irradiated with increasing fluences of uv light. DNA of known molecular weight was used to determine rates of induction for antibody-binding sites associated with (6-4) photoproducts and cyclobutane dimers. These rates were calculated to be 0.6 (6-4) photoproducts and 1.2 cyclobutane dimers/10(8) Da/J/m2. At low uv fluences (6-4) photoproducts were induced at one-half the rate of cyclobutane dimers, whereas at higher fluences (6-4) photoproducts predominated.  相似文献   

15.
16.
17.
Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet (u.v.) light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr- host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. These results show that in this system, the lesion inducing transitions (the major type of u.v.-induced mutation) is not the cyclobutyl pyrimidine dimer; a strong candidate for a mutagenic lesion is the Pyr(6-4)Pyo photoproduct. On the other hand, photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in the process of targeted u.v. mutagenesis.  相似文献   

18.
Recently, we reported that the distribution of ultraviolet light (u.v.) induced pyrimidine dimers in nucleosome core DNA has a striking 10.3(+/- 0.1) base periodicity and the regions of enhanced quantum yield map to positions where DNA strands are farthest from the core histone surface. Improvement of the mapping procedure has allowed us to analyze this distribution in more detail, and compare the distribution pattern for nucleosome cores from intact chromatin having different higher-order structures (from the 10 nm filament to the 30 nm fiber). At all levels of chromatin compaction, we observed the following. (1) The average periodicity in pyrimidine dimer yield is 10.3 bases. (2) The peak-to-peak spacing in this distribution is significantly different from 10.3 bases in the region covering three helix turns immediately 5' of the dyad axis. (3) There is a suppression of photoproduct formation in the region of the dyad axis, especially at position 84 from the 5' end. (4) The approximately 10 base ensembles have alternating peak intensities throughout core DNA. Furthermore, peak deconvolution analysis of the pyrimidine dimer pattern yielded a striking similarity in photoproduct yield for the different levels of chromatin compaction. Irradiation of isolated core DNA yields a much more random distribution of photoproducts, although a weak modulation pattern is observed (indicating that there is a non-random alignment of adjacent pyrimidines in our core DNA preparations). This pattern includes a depression in photoproduct yield near position 95, suggesting that the sequence in this region plays a role in nucleosome positioning. These results show that the u.v. photofootprint is a sensitive, diagnostic probe of core histone-DNA interactions in intact chromatin, and these interactions are not significantly altered by changes in the structural state of the chromatin fiber.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号