首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
G Csaba  P Kovács 《Cytobios》1987,52(208):17-22
Insulin treatment induced in Tetrahymena pyriformis a positive hormonal imprinting, and in Tetrahymena thermophila a negative imprinting, resulting in increased and decreased binding capacity, respectively, at re-exposure to the hormone. The imprinting, or the information associated with it, is transferred by the nutrient medium of the insulin-treated cells to those not treated. The issue of transfer depends on the nature of the receiver taxon, leading always to a positive imprinting in Tetrahymena pyriformis, and to a negative imprinting in Tetrahymena thermophila, regardless of the nature of the 'imprinted' transmitter taxon. The findings substantiate the transferability of hormonal imprinting by the nutrient medium at the unicellular level, the key role of the postreceptorial mechanism in determining the trend of imprinting and may explain the persistence of imprinting in the progeny generations.  相似文献   

2.
It is known from model experiments on Tetrahymena that primary exposure to a hormone induces receptor formation or amplification, in other words a hormonal imprinting. Substances acting on the intracellular Ca2+ level of the Tetrahymena, such as TMB-8, EDTA, EGTA, NiCl2 and La(NO3)3, interfered with hormonal imprinting of the unicellular to different degrees, and some of them influenced hormone (insulin, TSH) binding also independently of imprinting. Interference with the intracellular Ca-metabolism generally influenced imprinting by insulin and TSH, which were mediated by different mechanisms, to dissimilar degrees, or in opposite directions. On combined application of the agents acting on Ca-metabolism, their effects were additive. It appears that intact Ca-mediation is an essential prerequisite for normal hormonal imprinting.  相似文献   

3.
The unicellular Tetrahymena possess hormone receptors in the nuclear envelope similarly to higher rank animals. These receptors bind insulin and their specificity is detectable by monoclonal antibodies developed to insulin. The hormonal (insulin) pretreatment (imprinting) of the cell did not alter the binding capacity of the nuclear membrane, demonstrated by antibody-technique. The specific binding characteristics of the plasma membrane was demonstrated and this was significantly increased following imprinting. In the nucleus of Tetrahymena presence of insulin was not detected by immunocytochemical method.  相似文献   

4.
The first interaction between target cell and hormone gives rise to hormonal imprinting, which accounts for greater responsiveness of the cell at later interactions. The mechanism of hormonal imprinting is obscure; we based experimental approach to its closer study on combined treatment of Tetrahymena, as model cells, with diiodotyrosine (T2), which stimulates the division, and cell growth inhibitors, which interfere with different stages of cell reproduction, and methylamine, which inhibits cluster formation in the membrane. Of these, actinomycin D and methylamine inhibited the growth of the Tetrahymena, while colchicine did not, and all three suppressed the division stimulating action of T2, but could not prevent hormonal imprinting, as demonstrated on later re-exposure to T2 of cells preexposed and not preexposed to T2 in combination with the inhibitors. It appears that the underlying mechanism of hormonal imprinting is highly complex, and involves many subcellular mechanisms and structures, but suppression of, or gross interference with, one or another of these cannot delete, only quantitatively reduce, the consequence of the first interaction with the hormone, i.e. hormonal imprinting.  相似文献   

5.
It was demonstrated earlier, that long lasting exposure of Tetrahymena to a hormone (histamine) resulted in an increased responsiveness to a later re-exposure. However, it was difficult to establish whether selection or amplification plays a role in receptor differentiation. As diiodotyrosine (T2) enhances the growth of Tetrahymena, in the present experiment the effect of T2-treatment on a long-term culture of Tetrahymena pyriformis was analysed by mathematical-statistical methods to differentiate the effects of selection and amplification mechanisms on hormone receptor development. Although continuous and periodic treatment with T2 enhanced cell division equally, the resulting populations differed in structure. On continuous treatment the population tended to become inhomogenous. The variance tended to increase for 9 days and decreased afterwards without, however, returning to the control level. On periodic treatment the variance was the same as in the control group, but the second and third exposure were significantly more effective than the first treatment, suggesting that the primary encounter with the hormone had given rise to lasting alterations (hormonal imprinting). It follows that continuous exposure involves a selection process which does not, however, account for a steady increase of the growth rate; for initial amplification, taking place also in this condition, and selection which takes effect later, compensate one another's effects. Regarding the unicellular experimental system as a phylo- and ontogenetic model, the conclusion lies close at hand that the selection and amplication mechanisms promote hormone receptor development by joint rather than alternate action.  相似文献   

6.
Diiodotyrosine induced receptor 'memory' at a concentration as low as 10(-18) M. Repeated exposure enhanced cellular responsiveness. Treatment with diiodotyrosine for 1 h, 4 times, induced receptor 'memory' more efficiently than a single uninterrupted treatment for 4 h. Immediately after induction, the receptor 'memory' is subject to retroactive interference by foreign hormonal stimuli, and can be extinguished completely by combined hormone treatment. Thus, the phenomenon of retroactive interference also takes effect at the unicellular level. The experimental observations indicate that receptor 'memory', induced in Tetrahymena by hormonal imprinting, has certain common features with the neuronal memory of higher organisms.  相似文献   

7.
The unicellular Tetrahymena does not normally possess a steroid hormone (dehydroepiandrosterone, DHEA) or a glucocorticoid (dexamethasone) receptor, but both kinds of receptor can be induced in it by pretreatment (imprinting) with the adequate hormone. The specific receptors which arise are demonstrable experimentally. Examination of Tetrahymena cells for endogenous steroids by the radioimmunoassay (RIA) technique detected an appreciable concentration of DHEA and DHEA sulphate, and lesser concentrations of testosterone and estradiol in this unicellular organism.  相似文献   

8.
Primary interaction of TSH with the unicellular Tetrahymena accounted for an increase in TSH binding capacity on reexposure, i.e. for a regular hormonal imprinting. TSH in itself did not give rise to a faulty imprinting (for insulin). Combination of TSH with dibutyryl cAMP reduced the intensity of imprinting, whereas theophylline or lithium ions not only reduced the efficacy of normal imprinting, but also gave rise to faulty imprinting (for insulin instead of TSH).  相似文献   

9.
In the unicellular organism, Tetrahymena, the first encounter with an exogeneously given hormone results in hormonal imprinting. This causes an increase of the binding capacity of receptors and the production of the appropriate hormone in the progeny generations of the treated cell. In the present experiments the quantity (using radioimmunoassay) and localization (using confocal laser scanning microscopy) of the immunologically insulin‐like material (hereafter insulin) were studied for 10 days after 4 h or 24 h 10−6 m insulin treatment (hormonal imprinting). Forty‐eight hours after both insulin treatments a high quantity of insulin was present in the cells. This value was also significantly increased after 96 h. After 8 days the difference to the control was significant only in the 24 h treated group. Confocal microscopy (using antibody to pig insulin) localized insulin in the cell body. The oral field contained extremely high quantities of the endogeneous hormone. Insulin treatment (after 48 and 96 h) caused an elevation of insulin content in general, and specific accumulation in the posterior sections of the cell, around the nucleus and in the periphery were observed. Ten days after both treatments only the peripheral region of the cell body and the ciliary row contained more insulin than the control. This means that after insulin treatment the quantity of insulin increases for a lengthy time period which is followed by the expression of insulin in the peripheral region. Insulin contained by Tetrahymena 48 h after imprinting stimulated glucose uptake of rat diaphragm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The unicellular Tetrahymena has receptors for hormones of higher vertebrates, produces these hormones, and their signal pathways are similar. The first encounter with a hormone in higher dose provokes the phenomenon of hormonal imprinting, by which the reaction of the cell is quantitatively modified. This modification is transmitted to the progeny generations. The duration of the single imprinter effect of two representative signal molecules, insulin and 5-HT (5-hydroxytryptamine), in two concentrations (10-6 and 10-15 M) were studied. The effects of imprinting were followed in 5 physiological indices: (i) insulin binding, (ii) 5-HT synthesis, (iii) swimming behaviour, (iv) cell growth and (v) chemotaxis in progeny generations 500 and 1000. The result of each index was different from the non-imprinted control functions, growth rate, swimming behaviour and chemotactic activity to insulin being enhanced, while others, e.g. synthesis and chemotactic responsiveness of 5-HT and the binding of insulin were reduced. This means that a function-specific heritable epigenetic change during imprinting occurs, and generally a single encounter with a femtomolar hormone concentration is enough for provoking durable and heritable imprinting in Tetrahymena. The experiments demonstrate the possibility of epigenetic effects at a unicellular level and call attention to the possibility that the character of unicellular organisms has changed through to the present day due to an enormous amount of non-physiological imprinter substances in their environment. The results - together with results obtained earlier in mammals - point to the validity of epigenetic imprinting effects throughout the animal world.  相似文献   

11.
Tetrahymena pyriformiswas treated with insulin, histamine or serotonin for 30 min and epidermal growth factor (EGF) level was studied inside the cells using specific antibodies and flow cytometry as well as confocal microscopy. The EGF concentration was highly significantly elevated after hormone treatment, regardless of the hormone used. EGF was localized mainly in the cortical region (mucocysts) and in vesicles and this localization did not differ in untreated and treated cells. The results call attention to the possibility of interactions between hormones at unicellular level and points to the presence of a hormonal system in Tetrahymena that includes receptors, hormones and signal transduction pathways as well as hormonal interactions. This could be the basis of further evolution to the hormonal system of multicellulars.  相似文献   

12.
Insulin imprinting given to the unicellular Tetrahymena considerably increases the uptake and intracellular storage of amino acids even many generations after the actual contact with the hormone. On the other hand, both the first and the second contacts with insulin increase the rate of the excretion of the stored amino acids. On the basis of the results obtained it seems to be possible that both protein synthesis and exocytosis of the Tetrahymena change as an effect of imprinting, either in general or specifically due to the formation of new hormone receptors.  相似文献   

13.
The unicellular Tetrahymena has hormone receptors and hormones which are characteristic of higher vertebrates, as well as similar signal transduction pathways. In the present experiments, immunocytochemistry and confocal microscopy were used to study the presence and localization of beta-endorphin in Tetrahymena pyriformis GL. Endorphin (or endorphin-like material) was localized in the cortical structures, oral field, cilia and nuclear envelope. One-hour treatment with beta-endorphin ('hormonal imprinting') increased the presence of immunocytochemically demonstrable endorphin immediately and after 24 h, and was especially strong after 96 h of treatment. Simultaneous treatment with naloxone, an opioid antagonist, did not inhibit endorphin effect, but had an additive effect on endorphin production. Naloxone alone induced a very intensive accumulation of endorphin 96 h after treatment. The results support the possibility of a hormone production being induced by the imprinting procedure, but the imprinter-like effect of naloxone also points to the importance in this case of non-discriminatory receptors also being involved in the process.  相似文献   

14.
Na-metavanadate and ouabain that act on Na+K(+)-ATPase had no influence on insulin binding to Tetrahymena immediately after treatment, but after 24 h considerably enhanced the binding capacity of generations of progeny. The increase in binding was of a similar magnitude to that elicited by insulin imprinting. Vanadate failed to increase the imprinting potential of insulin while ouabain even prevented insulin imprinting when administered together with insulin, but, did not affect imprinting when administered after insulin. By analogy with higher organisms it appears that inhibition of Na+K(+)-ATPase plays no role in the insulin-like effect of vanadate on the unicellular Tetrahymena, as judged also from the capacity to bind insulin of the generations of offspring.  相似文献   

15.
After cyclodextrin-coated 10(-6) m steroid hormone treatment for 3 days (hormonal imprinting), Tetrahymena cells and their media were analysed by radioimmunoassay for the same hormone and for the presence of the other two. In the absence of hormone treatment, the cells contained no detectable levels of the three steroids. By 2 days in fresh medium following exposure of cells to a 72 h pretreatment of each specific hormone, correspondingly high quantities of hydrocortisone and oestradiol, but lesser quantities of testosterone, were found in both the media and the cells. One week after treatment only traces of hydrocortisone were found, exclusively within the cells themselves. Oestradiol was present in measurable quantities in both cells and media, whereas testosterone was only present in the medium. The presence of the other two hormones to the one used in the pretreatment were not usually present, except that when testosterone had been given, some oestradiol was also detected at 48 h, suggesting Tetrahymena has a functional cytochrome P(450)aromatase.  相似文献   

16.
Gold-labeled insulin is bound first of all to the cilia of the oral field of Tetrahymena. A primary treatment (hormonal imprinting) with insulin increases the binding capacity even after 24h and makes it more sensitive for appearance a week later, within a minute of giving insulin-gold. The food vacuoles contain insulin-gold in pretreated cells or without pretreatment as well, though in imprinted situations the label can be found in pinocytotic vesicles at the bases of cilia in the oral field. Altogether, a functional difference can be observed between the cilia of the oral and non-oral surfaces of Tetrahymena and hormonal imprinting has a specifying effect on the binding of labeled hormone.  相似文献   

17.
The unicellular Tetrahymena pyriformis GL produce, store and secrete vertebrate‐like hormones. In earlier experiments the effect of different stressors on the hormone levels of Tetrahymena was studied and an elevation of these was found. In the present experiments the hormone binding was investigated, using flow cytometric method. FITC‐insulin binding was elevated after concentrated (5, 10, or 20 mg ml?1) NaCl or 0.01%, 0.1%, or 0.05% formaldehyde treatment, or after thermal stress (37°C). Serotonin given together with NaCl increased and together with formaldehyde decreased the binding. Histamine always decreased the binding and insulin was indifferent. Four hours after osmotic stress, hormone binding significantly decreased and this was not influenced by hormones. However, 4 h after formaldehyde stress the binding elevated and this was further increased by repeated hormone treatments. The results show that the stress in Tetrahymena provokes an activation of its hormonal system (hormone production and binding), which is differently influenced by exogeneously given hormones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Primary exposure to a hormone (hormonal imprinting) alters--in the case of the Tetrahymena increases--cellular response to re-exposure(s) to the same hormone. The intensity of hormonal imprinting depends on the phase of the cell cycle in which the primary exposure has taken place. The effect of imprinting was greater on the cells exposed to the hormone in phase G1 than on those exposed in phase S or G2. The response pattern of the progeny generations corresponded to that of the primarily exposed (imprinted) ancestor cell, irrespective of their own pre-exposure in phase G1, G2 or S of their cycle.  相似文献   

19.
Dinitrophenol (DNP), an inhibitor of endocytosis of hormone receptors, Tris, an inhibitor of recycling and chloroquine, an inhibitor of lysosomal degradation, all decreased the binding of insulin and inhibited the development of hormonal imprinting in Tetrahymena. The effects of DNP and Tris seemed to be similar even quantitatively. The effect of chloroquine proved to be somewhat different, it appeared later, was more pronounced after 24 hours and more marked when insulin was also administered. Combined administration of Tris + DNP inhibited the binding of insulin but this inhibition was the one which disappeared most completely after 24 hours and the one where the inhibition of imprinting was the most pronounced. Tris + chloroquine led to severe destruction of the cells. The conclusion has been drawn that the inhibition of membrane circulation inhibits not only the hormone binding but also the development of imprinting in Tetrahymena.  相似文献   

20.
Hormonal imprinting takes place at the primary interaction between target cell and hormone, and alters cellular response to the hormone for lifetime (at the unicellular level in many subsequent generations). Imprinting induced in Tetrahymena cells by diiodotyrosine at the optimum temperature of 25 degrees C took effect on re-exposure to the hormone at 25 degrees C and 15 degrees C, but failed to take effect if the cells were first exposed to the hormone at 15 degrees C or 32 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号