首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
La is an abundant, mostly nuclear, RNA-binding protein that interacts with regions rich in pyrimidines. In the nucleus it has a role in the metabolism of several small RNAs. A number of studies, however, indicate that La protein is also implicated in cytoplasmic functions such as translation. The association of La in vivo with endogenous mRNAs engaged with polysomes would support this role, but this point has never been addressed yet. Terminal oligopyrimidine (TOP) mRNAs, which code for ribosomal proteins and other components of the translational apparatus, bear a TOP stretch at the 5' end, which is necessary for the regulation of their translation. La protein can bind the TOP sequence in vitro and activates TOP mRNA translation in vivo. Here we have quantified La protein in the cytoplasm of Xenopus oocytes and embryo cells and have shown in embryo cells that it is associated with actively translating polysomes. Disruption of polysomes by EDTA treatment displaces La in messenger ribonucleoprotein complexes sedimenting at 40-60 S. The results of polysome treatment with either low concentrations of micrococcal nuclease or with high concentrations of salt indicate, respectively, that La association with polysomes is mediated by mRNA and that it is not an integral component of ribosomes. Moreover, the analysis of messenger ribonucleoprotein complexes dissociated from translating polysomes shows that La protein associates with TOP mRNAs in vivo when they are translated, in line with a positive role of La in the translation of this class of mRNAs previously observed in cultured cells.  相似文献   

2.
Human translation elongation factor 1A (EF1A) is a member of a large class of mRNAs, including ribosomal proteins and other translation elongation factors, which are coordinately translationally regulated under various conditions. Each of these mRNAs contains a terminal oligopyrimidine tract (TOP) that is required for translational control. A human growth hormone (hGH) expression construct containing the promoter region and 5' untranslated region (UTR) of EF1A linked to the hGH coding region (EF1A/hGH) was translationally repressed following rapamycin treatment in similar fashion to endogenous EF1A in human B lymphocytes. Mutation of two nucleotides in the TOP motif abolished the translational regulation. Gel mobility shift assays showed that both La protein from human B lymphocyte cytoplasmic extracts as well as purified recombinant La protein specifically bind to an in vitro-synthesized RNA containing the 5' UTR of EF1A mRNA. Moreover, extracts prepared from rapamycin-treated cells showed increased binding activity to the EF1A 5' UTR RNA, which correlates with TOP mRNA translational repression. In an in vitro translation system, recombinant La dramatically decreased the expression of EF1A/hGH construct mRNA, but not mRNAs lacking an intact TOP element. These results indicate that TOP mRNA translation may be modulated through La binding to the TOP element.  相似文献   

3.
4.
mTORC1 [mTOR (mammalian target of rapamycin) complex 1] regulates diverse cell functions. mTORC1 controls the phosphorylation of several proteins involved in mRNA translation and the translation of specific mRNAs, including those containing a 5'-TOP (5'-terminal oligopyrimidine). To date, most of the proteins encoded by known 5'-TOP mRNAs are proteins involved in mRNA translation, such as ribosomal proteins and elongation factors. Rapamycin inhibits some mTORC1 functions, whereas mTOR-KIs (mTOR kinase inhibitors) interfere with all of them. mTOR-KIs inhibit overall protein synthesis more strongly than rapamycin. To study the effects of rapamycin or mTOR-KIs on synthesis of specific proteins, we applied pSILAC [pulsed SILAC (stable isotope-labelling with amino acids in cell culture)]. Our results reveal, first, that mTOR-KIs and rapamycin differentially affect the synthesis of many proteins. Secondly, mTOR-KIs inhibit the synthesis of proteins encoded by 5'-TOP mRNAs much more strongly than rapamycin does, revealing that these mRNAs are controlled by rapamycin-insensitive outputs from mTOR. Thirdly, the synthesis of certain other proteins shows a similar pattern of inhibition. Some of them appear to be encoded by 'novel' 5'-TOP mRNAs; they include proteins which, like known 5'-TOP mRNA-encoded proteins, are involved in protein synthesis, whereas others are enzymes involved in intermediary or anabolic metabolism. These results indicate that mTOR signalling may promote diverse biosynthetic processes through the translational up-regulation of specific mRNAs. Lastly, a SILAC-based approach revealed that, although rapamycin and mTOR-KIs have little effect on general protein stability, they stabilize proteins encoded by 5'-TOP mRNAs.  相似文献   

5.
La, a 52-kDa autoantigen in patients with systemic lupus erythematosus, was one of the first cellular proteins identified to interact with viral internal ribosome entry site (IRES) elements and stimulate poliovirus (PV) and hepatitis C virus (HCV) IRES-mediated translation. Previous results from our laboratory have shown that a small, yeast RNA (IRNA) could selectively inhibit PV and HCV IRES-mediated translation by sequestering the La protein. Here we have identified an 18-amino-acid-long sequence from the N-terminal "La motif" which is required for efficient interaction of La with IRNA and viral 5' untranslated region (5'-UTR) elements. A synthetic peptide (called LAP, for La peptide) corresponding to this sequence (amino acids 11 to 28) of La was found to efficiently inhibit viral IRES-mediated translation in vitro. The LAP efficiently enters Huh-7 cells and preferentially inhibits HCV IRES-mediated translation programmed by a bicistronic RNA in vivo. The LAP does not bind RNA directly but appears to block La binding to IRNA and PV 5'-UTR. Competition UV cross-link and translation rescue experiments suggested that LAP inhibits IRES-mediated translation by interacting with proteins rather than RNA. Mutagenesis of LAP demonstrates that single amino acid changes in a highly conserved sequence within LAP are sufficient to eliminate the translation-inhibitory activity of LAP. When one of these mutations (Y23Q) is introduced into full-length La, the mutant protein is severely defective in interacting with the PV IRES element and consequently unable to stimulate IRES-mediated translation. However, the La protein with a mutation of the next tyrosine moiety (Y24Q) could still interact with PV 5'-UTR and stimulate viral IRES-mediated translation significantly. These results underscore the importance of the La N-terminal amino acids in RNA binding and viral RNA translation. The possible role of the LAP sequence in La-RNA binding and stimulation of viral IRES-mediated translation is discussed.  相似文献   

6.
7.
Y Biberman  O Meyuhas 《FEBS letters》1999,456(3):357-360
Vertebrate TOP mRNAs contain a 5' terminal oligopyrimidine tract (5' TOP), which is subject to selective translational repression in non-growing cells or in cell-free translation systems. In the present study, we monitored in vitro the effect of increasing amounts of a 16 nucleotides long oligoribonucleotide representing the 5' terminus of mouse ribosomal protein S16 mRNA on the translation of TOP and non-TOP mRNAs. Our results demonstrate that the wild-type sequence (but not its mutant counterparts) derepresses the translation of mRNAs containing 5' TOP motifs, but failed to stimulate the translation of non-TOP mRNAs, even if the latter differed only by a single nucleotide from their 5' TOP-containing counterparts. Similar results have been obtained with both wheat germ extract and rabbit reticulocyte lysate. It appears, therefore, that translational repression of TOP mRNAs is achieved in vitro by the accumulation of a titratable repressor rather than by the loss of an activator and that this repressor recognizes multiple TOP mRNAs with a diverse set of 5' TOP motifs.  相似文献   

8.
9.
Surfactant protein A (SP-A) plays an important role in host defense, modulation of inflammatory processes, and surfactant-related functions of the lung. The human SP-A (hSP-A) locus consists of two functional genes, SP-A1 and SP-A2. Several hSP-A 5'-untranslated region (UTR) splice variants for each gene have been characterized and shown to be translated in vitro and in vivo. In this report, we investigated the role of hSP-A 5'-UTR splice variants on SP-A production and molecular mechanisms involved. We used in vitro transient expression of hSP-A 5'-UTR constructs containing luciferase as the reporter gene and quantitative real-time PCR to study hSP-A 5'-UTR-mediated gene expression. We found that 1) the four (A'D', ABD, AB'D', and A'CD') 5'-UTR splice variants under study enhanced gene expression, by increasing luciferase activity from 2.5- to 19.5-fold and luciferase mRNA from 4.3- to 8.8-fold compared with the control vector that lacked hSP-A 5'-UTR; 2) all four 5'-UTR splice variants studied regulated mRNA stability. The ABD variant exhibited the lowest rate of mRNA decay compared with the other three constructs (A'D', AB'D', and A'CD'). These three constructs also exhibited significantly lower rate of mRNA decay compared with the control vector; 3) based on the indexes of translational efficiency (luciferase activity/mRNA), ABD and AB'D' exhibited higher translational efficiency compared with the control vector, whereas the translational efficiency of each A'D' and A'CD' was lower than that of the control vector. These findings indicate that the hSP-A 5'-UTR splice variants play an important role in both SP-A translation and mRNA stability.  相似文献   

10.
BACKGROUND INFORMATION: Maskin is a member of the TACC (transforming acidic coiled-coil) domain proteins found in Xenopus laevis oocytes and embryos. It has been implicated in the co-ordination of the spindle and has been reported to mediate translational repression of cyclin B1 mRNA. RESULTS: In the present study, we report that maskin mRNA is translationally repressed at the level of initiation in stage 4 oocytes and becomes activated in stage 6 oocytes. The translational repression of maskin mRNA correlates with the presence of a short poly(A) tail on this mRNA in stage 4 oocytes. The 3'-UTR (untranslated region) of maskin can confer the translational regulation to a reporter mRNA, and so can the 3'-UTR of human TACC3. A conserved GUCU repeat element was found to repress translation in both stage 4 and stage 6 oocytes, but deletion of this element did not abrogate repression in stage 4 oocytes. UV cross-linking experiments indicated that overlapping sets of proteins bind efficiently to both the maskin and the cyclin B1 3'-UTRs. As reported previously, CPEB [CPE (cytoplasmic polyadenylation element)-binding protein] binds to the cyclin B1 3'-UTR, but its binding to the maskin 3'-UTR is minimal. By RNA affinity chromatography and MS, we identified the EDEN-BP [EDEN (embryonic deadenylation element)-binding protein] as one of the proteins binding to both the maskin and the cyclin B1 3'-UTRs. CONCLUSIONS: Maskin mRNA is translationally regulated by at least two repressor elements and an activation element. One of the repessor elements is the evolutionarily conserved GUCU repeat. EDEN-BP binds to both the maskin and cyclin B1 3'-UTRs, indicating it may be involved in the deadenylation of these mRNAs.  相似文献   

11.
The human gene RPMS12 encodes a protein similar to bacterial ribosomal protein S12 and is proposed to represent the human mitochondrial orthologue. RPMS12 reporter gene expression in cultured human cells supports the idea that the gene product is mitochondrial and is localized to the inner membrane. Human cells contain at least four structurally distinct RPMS12 mRNAs that differ in their 5'-untranslated region (5'-UTR) as a result of alternate splicing and of 5' end heterogeneity. All of them encode the same polypeptide. The full 5'-UTR contains two types of sequence element implicated elsewhere in translational regulation as follows: a short upstream open reading frame and an oligopyrimidine tract similar to that found at the 5' end of mRNAs encoding other growth-regulated proteins, including those of cytosolic ribosomes. The fully spliced (short) mRNA is the predominant form in all cell types studied and is translationally down-regulated in cultured cells in response to serum starvation, even though it lacks both of the putative translational regulatory elements. By contrast, other splice variants containing one or both of these elements are not translationally regulated by growth status but are translated poorly in both growing and non-growing cells. Reporter analysis identified a 26-nucleotide tract of the 5'-UTR of the short mRNA that is essential for translational down-regulation in growth-inhibited cells. Such experiments also confirmed that the 5'-UTR of the longer mRNA variants contains negative regulatory elements for translation. Tissue representation of RPMS12 mRNA is highly variable, following a typical mitochondrial pattern, but the relative levels of the different splice variants are similar in different tissues. These findings indicate a complex, multilevel regulation of RPMS12 gene expression in response to signals mediating growth, tissue specialization, and probably metabolic needs.  相似文献   

12.
13.
Previous studies have shown that oral administration of leucine to fasted rats results in a preferential increase in liver in the translation of mRNAs containing an oligopyrimidine sequence at the 5'-end of the message (i.e. a TOP sequence). TOP mRNAs include those encoding the ribosomal proteins (rp) and translation elongation factors. In cells in culture, the preponderance of evidence suggests that translation of TOP mRNAs is regulated by the mammalian target of rapamycin (mTOR), a protein kinase that signals through ribosomal protein S6 kinase (S6K1) to rpS6. However, the results of previous studies were recently challenged by several reports suggesting that translation of TOP mRNAs is independent of mTOR, S6K1, and S6 phosphorylation. The purpose of the present study was to evaluate the role of mTOR in the stimulation of TOP mRNA translation by leucine in vivo. Fasted rats were treated with the mTOR inhibitor, rapamycin, prior to oral administration of leucine. It was found that rapamycin severely attenuated leucine-induced signaling through mTOR in liver. In addition, rapamycin prevented the enhanced translation of TOP mRNAs in rats administered leucine, as assessed by a decrease in the proportion of TOP mRNAs associated with polysomes (i.e. those mRNAs being actively translated). Instead, in rapamycin-treated rats, ribosomal protein mRNAs accumulated in the fraction containing monosomes (mRNA bound to one ribosome). The results suggest that in liver in vivo, mTOR-dependent signaling is critical for maximal stimulation of TOP mRNA translation.  相似文献   

14.
The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5'-untranslated region (5'-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5'-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3'-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5'-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5'-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5'-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5'-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES, apparently arresting the IRES-associated translation pre-initiation complex in an inactive state. This function of HuR as a 5'-UTR-binding protein and dual-purpose translation repressor may be critical for the precise regulation of IGF-IR expression essential to normal cellular homeostasis.  相似文献   

15.
Light-regulated translation of chloroplastic mRNAs in the green alga Chlamydomonas reinhardtii requires nuclear encoded factors that interact with the 5'-untranslated region (5'-UTR) of specific mRNAs to enhance their translation. We have previously identified and characterized a set of proteins that bind specifically to the 5'-UTR of the chloroplastic psbA mRNA. Accumulation of these proteins is similar in dark- and light-grown cells, whereas their binding activity is enhanced during growth in the light. We have identified a serine/threonine protein phosphotransferase, associated with the psbA mRNA-binding complex, that utilizes the beta-phosphate of ADP to phosphorylate and inactivate psbA mRNA-binding in vitro. The inactivation of mRNA-binding in vitro is initiated at high ADP levels, levels that are attained in vivo only in dark-grown chloroplasts. These data suggest that the translation of psbA mRNA is attenuated by phosphorylation of the mRNA-binding protein complex in response to a rise in the stromal concentration of ADP upon transfer of cells to dark.  相似文献   

16.
17.
Iron regulates synthesis of the iron storage protein ferritin at the translational level through interaction between a stem-loop structure, the iron-responsive element (IRE), located in the 5'-untranslated region (5'-UTR) of ferritin mRNAs, and a protein, the iron regulatory protein (IRP). The role of IRE secondary structure in translational regulation of ferritin synthesis was explored by introducing ferritin constructs containing mutations in the IRE into Rat-2 fibroblasts. Our in vivo studies demonstrate that size and sequence of the loop within the IRE and the distance and/or spatial relationship of this loop to the bulged nucleotide region closest to the loop must be preserved in order to observe iron-dependent translation of ferritin mRNA. In contrast, changes in nucleotide sequence of the upper stem can be introduced without affecting translational regulation in vivo, as long as a stem can be formed. Our in vivo results suggest that only a very small variation in the affinity of interaction of IRP with IRE can be tolerated in order to maintain iron-dependent regulation of translation.  相似文献   

18.
5'-UTR RNA G-quadruplexes: translation regulation and targeting   总被引:1,自引:0,他引:1  
  相似文献   

19.
In mammalian cells, p70(S6K) plays a key role in translational control of cell proliferation in response to growth factors. Because of the reliance on translational control in early vertebrate development, we cloned a Xenopus homolog of p70(S6K) and investigated the activity profile of p70(S6K) during Xenopus oocyte maturation and early embryogenesis. p70(S6K) activity is high in resting oocytes and decreases to background levels upon stimulation of maturation with progesterone. During embryonic development, three peaks of activity were observed: immediately after fertilization, shortly before the midblastula transition, and during gastrulation. Rapamycin, an inhibitor of p70(S6K) activation, caused oocytes to undergo germinal vesicle breakdown earlier than control oocytes, and sensitivity to progesterone was increased. Injection of a rapamycin-insensitive, constitutively active mutant of p70(S6K) reversed the effects of rapamycin. However, increases in S6 phosphorylation were not significantly affected by rapamycin during maturation. mos mRNA, which does not contain a 5'-terminal oligopyrimidine tract (5'-TOP), was translated earlier, and a larger amount of Mos protein was produced in rapamycin-treated oocytes. In fertilized eggs rapamycin treatment increased the translation of the Cdc25A phosphatase, which lacks a 5'-TOP. Translation assays in vivo using both DNA and RNA reporter constructs with the 5'-TOP from elongation factor 2 showed decreased translational activity with rapamycin, whereas constructs without a 5'-TOP or with an internal ribosome entry site were translated more efficiently upon rapamycin treatment. These results suggest that changes in p70(S6K) activity during oocyte maturation and early embryogenesis selectively alter the translational capacity available for mRNAs lacking a 5'-TOP region.  相似文献   

20.
The amyloid precursor protein (APP) has been associated with Alzheimer's disease (AD) because APP is processed into the beta-peptide that accumulates in amyloid plaques, and APP gene mutations can cause early onset AD. Inflammation is also associated with AD as exemplified by increased expression of interleukin-1 (IL-1) in microglia in affected areas of the AD brain. Here we demonstrate that IL-1alpha and IL-1beta increase APP synthesis by up to 6-fold in primary human astrocytes and by 15-fold in human astrocytoma cells without changing the steady-state levels of APP mRNA. A 90-nucleotide sequence in the APP gene 5'-untranslated region (5'-UTR) conferred translational regulation by IL-1alpha and IL-1beta to a chloramphenicol acetyltransferase (CAT) reporter gene. Steady-state levels of transfected APP(5'-UTR)/CAT mRNAs were unchanged, whereas both base-line and IL-1-dependent CAT protein synthesis were increased. This APP mRNA translational enhancer maps from +55 to +144 nucleotides from the 5'-cap site and is homologous to related translational control elements in the 5'-UTR of the light and and heavy ferritin genes. Enhanced translation of APP mRNA provides a mechanism by which IL-1 influences the pathogenesis of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号