首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
De novo lipogenesis and dietary fat uptake are two major sources of fatty acid deposits in fat of obese animals. To determine the relative contribution of fatty acids from these two sources in obesity, we have determined the distribution of c16 and c18 fatty acids of triglycerides in plasma, liver, and epididymal fat pad of Zucker diabetic fatty (ZDF) rats and their lean littermates (ZL) under two isocaloric dietary fat conditions. Lipogenesis was also determined using the deuterated water method. Conversion of palmitate to stearate and stearate to oleate was calculated from the deuterium incorporation by use of the tracer dilution principle. In the ZL rat, lipogenesis was suppressed from 70 to 24%, conversion of palmitate to stearate from 86 to 78%, and conversion of stearate to oleate from 56 to 7% in response to an increase in the dietary fat-to-carbohydrate ratio. The results suggest that suppression of fatty acid synthase and stearoyl-CoA desaturase activities is a normal adaptive mechanism to a high-fat diet. In contrast, de novo lipogenesis, chain elongation, and desaturation were not suppressed by dietary fat in the ZDF rat. The lack of ability to adapt to a high-fat diet resulted in a higher plasma triglyceride concentration and excessive fat accumulation from both diet and de novo synthesis in the ZDF rat.  相似文献   

2.
In the present study, we tested the hypothesis that cardiac substrate utilization is affected by oleic acid originating from the endogenous conversion of stearate by stearoyl-CoA desaturase and from the diet. Here, we show that the cardiac oleate content is increased in tristearate (TS)- and trioleate (TO)-fed rats when compared with chow-fed rats. TS or TO feeding increases mitochondrial fatty acid oxidation via activation of expression of the oxidative genes, activation of the AMP-activated protein kinase pathway, and a decrease in glucose uptake. These results suggest that oleic acid, both dietary and de novo synthesized, affects substrate utilization in the heart. Furthermore, our data show that the endogenous synthesis of oleate in the heart can compensate for a deficiency of this fatty acid in the diet.  相似文献   

3.
We have studied the accretion of lipids in growing mice. We measured the rates of synthesis and degradation of triglycerides in epididymal fat pads of mice maintained for 44 days on a low-fat, high-carbohydrate diet (I) or a high-fat, low-carbohydrate diet (II). 2H2O was added to the drinking water for 14 days. Rates of incorporation/washout of 2H to/from C1 of triglyceride-glycerol showed that triglyceride synthesis was greater than triglyceride degradation (net triglyceride balance was approximately 2.5 times greater in II than in I). The data also show that the contribution of de novo lipogenesis to triglyceride-bound palmitate was approximately 3 times greater in I than in II. This was consistent with a greater relative intake of carbohydrate in I vs. II. The rates of incorporation and washout of newly synthesized (2H-labeled) palmitate into and from triglycerides were also measured. Those data suggested a remodeling of triglyceride-bound fatty acids. On measuring the profile of triglyceride-bound fatty acids, we observed a decrease in the relative abundance of triglyceride-bound palmitate and stearate and an increase in triglyceride-bound oleate and linoleate. This was observed in I and II. In summary, diet substantially affects the deposition and modeling of triglycerides in adipose tissue during growth. 2H2O can be used to examine the mechanisms responsible for the accumulation of triglycerides, e.g., factors that affect 1) triglyceride synthesis and degradation and 2) the source of fatty acids that are used in esterification.  相似文献   

4.
Changes in body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semistarvation and refeeding as model inputs and computed whole body energy expenditure, de novo lipogenesis, and gluconeogenesis as well as turnover and oxidation of carbohydrate, fat, and protein. Published in vivo human data provided the basis for the model components that were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semistarvation and refeeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Refeeding caused an elevation of de novo lipogenesis that, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the prestarvation diet and physical activity, the original body weight and composition were eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes in body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements, thereby providing support for the validity of the model.  相似文献   

5.
6.
In order to study the effects of diet on fat distribution, circulating leptin levels and ob mRNA expression, diets of different macronutrient composition were fed to lean mice and gold thioglucose-obese mice. A high-fat diet and 2 high-carbohydrate diets, one containing mostly high-glycaemic-index starch and the other containing low-glycaemic-index starch were fed ad libitum for 10 weeks and were compared to standard laboratory chow. Weight gain was attenuated by feeding low-glycaemic-index starch in all mice and by feeding a high-fat diet in lean mice. Reduced adiposity was seen in lean mice fed low-glycaemic-index starch, whereas increased adiposity was seen in both lean and obese mice fed on the high-fat diet. Circulating leptin levels, when corrected for adiposity, were decreased in all mice fed either the high-fat diet or the low-GI diet. In epididymal fat pads, decreased ob mRNA expression was seen after both high-fat and high-glycaemic-index starch feeding. These results show that diet macronutrient composition contributes to the variability of circulating leptin levels by the combined effects of diet on fat distribution and on site-specific changes in ob mRNA expression.  相似文献   

7.
Small changes in lipogenic enzyme activity induced by dietary fats of different composition may, over the long term, have significant impact on the development of obesity. We have investigated the effect of high fat diets (45% of calories as fat) on abundance of mRNA encoding fatty acid synthetase (FAS) and glycerophosphate dehydrogenase (GPDH) in male Sprague-Dawley rats. When caloric intake was equal, the relative amount of hepatic FAS mRNA was greater in rats fed a saturated compared to a polyunsaturated fat diet. This difference could not be attributed to diet-induced changes in plasma insulin concentration. However, both fat diets suppressed hepatic FAS mRNA compared to a sucrose diet. Close correlation between FAS specific activity and the relative amount of mRNA suggested that regulation was mainly at a pre-translational level. Adipose tissue FAS mRNA was suppressed by the two fat diets equally while GPDH mRNA was unaffected by dietary composition. Retroperitoneal fat pads were significantly larger in rats fed saturated compared to those fed polyunsaturated fat for 26 weeks. We concluded that dietary saturated fats fail to suppress hepatic de novo lipogenesis as effectively as polyunsaturated fats, which may have implications for the prevention of obesity in humans.  相似文献   

8.
Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.  相似文献   

9.
Levan or high molecular beta-2,6-linked fructose polymer is produced extracellularly from sucrose-based substrates by bacterial levansucrase. In the present study, to investigate the effect of levan feeding on serum leptin, hepatic lipogenic enzyme and peroxisome proliferation-activated receptor (PPAR) alpha expression in high-fat diet-induced obese rats, 4-week-old Sprague-Dawley male rats were fed high-fat diet (beef tallow, 40% of calories as fat), and, 6 weeks later, the rats were fed 0%, 1%, 5% or 10% levan-supplemented diets for 4 weeks. Serum leptin and insulin level were dose dependently reduced in levan-supplemented diet-fed rats. The mRNA expressions of hepatic fatty acid synthase and acetyl CoA carboxylase, which are the key enzymes in fatty acid synthesis, were down-regulated by dietary levan. However, dietary levan did not affect the gene expression of hepatic malic enzyme, phosphatidate phosphohydrolase and HMG CoA reductase. Also, the lipogenic enzyme gene expression in the white adipose tissue (WAT) was not affected by the diet treatments. However, hepatic PPARalpha mRNA expression was dose dependently up-regulated by dietary levan, whereas PPARgamma in the WAT was not changed. The results suggest that the in vivo hypolipidemic effect of dietary levan, including anti-obesity and lipid-lowering, may result from the inhibition of lipogenesis and stimulation of lipolysis, accompanied with regulation of hepatic lipogenic enzyme and PPARalpha gene expression.  相似文献   

10.
Intracellular lipids and their synthesis contribute to the mechanisms and complications of obesity-associated diseases. We describe an NMR approach that provides an abbreviated lipidomic analysis with concurrent lipid biosynthetic fluxes. Following deuterated water administration, positional isotopomer analysis by deuterium NMR of specific lipid species was used to examine flux through de novo lipogenesis (DNL), FA elongation, desaturation, and TG-glycerol synthesis. The NMR method obviated certain assumptions regarding sites of enrichment and exchangeable hydrogens required by mass isotope methods. The approach was responsive to genetic and pharmacological gain or loss of function of DNL, elongation, desaturation, and glyceride synthesis. BDF1 mice consuming a high-fat diet (HFD) or matched low-fat diet for 35 weeks were examined across feeding periods to determine how flux through these pathways contributes to diet induced fatty liver and obesity. HFD mice had increased rates of FA elongation and glyceride synthesis. However DNL was markedly suppressed despite insulin resistance and obesity. We conclude that most hepatic TGs in the liver of HFD mice were formed from the reesterification of existing or ingested lipids, not DNL.  相似文献   

11.
High rates of de novo lipid synthesis have been discovered in certain kinds of tumours, including gallbladder cancer (GBC). Unlike several other tumours, GBC is highly insensitive to standard adjuvant therapy, which makes its treatment even more challenging. Although several potential targets and signalling pathways underlying GBC chemoresistance have been revealed, the precise mechanisms are still elusive. In this study, we found that α‐Mangostin, as a dietary xanthone, repressed the proliferation and clone formation ability, induced cell cycle arrest and the apoptosis, and suppressed de novo lipogenesis of gallbladder cancer cells. The underlying mechanisms might involve the activation of AMPK and, therefore, the suppression of SREBP1 nuclear translocation to blunt de novo lipogenesis. Furthermore, SREBP1 silencing by siRNA or α‐mangostin enhanced the sensitivity of gemcitabine in gallbladder cancer cells. In vivo studies also displayed that MA or gemcitabine administration to nude mice harbouring NOZ tumours can reduce tumour growth, and moreover, MA administration can significantly potentiate gemcitabine‐induced inhibition of tumour growth. Corroborating in vitro findings, tumours from mice treated with MA or gemcitabine alone showed decreased levels of proliferation with reduced Ki‐67 expression and elevated apoptosis confirmed by TUNEL staining, furthermore, the proliferation inhibition and apoptosis up‐regulation were obviously observed in MA combined with gemcitabine treatment group. Therefore, inhibiting de novo lipogenesis via targeting the AMPK/SREBP1 signalling by MA might provide insights into a potential strategy for sensitizing GBC cells to chemotherapy.  相似文献   

12.
In Sprague-Dawley rats, fatty acid synthase (FAS) activity is suppressed by dietary fat. To test the hypothesis that a defect in regulation of de novo fatty acid synthesis exists in massive obesity, we investigated the effect of diet on FAS mRNA levels in genetically obese JCR:LA-corpulent (cp) rats. We also determined levels of mRNA encoding adipsin, a fat cell-derived protein possibly associated with lipid metabolism. Hepatic FAS mRNA levels were elevated five-fold in obese compared to lean cp rats and were unsuppressed by dietary fat. Dietary sucrose increased FAS mRNA levels in lean cp rats, but, in contrast to Sprague-Dawley rats, little deposition of lipid resulted. Adipsin mRNA levels were fivefold lower in obese cp and Sprague-Dawley rats than in lean cp rats and were unaffected by diet. We conclude that exaggerated de novo fatty acid synthesis may play a major role in the pathogenesis of obesity in obese JCR:LA-corpulent rats.  相似文献   

13.
Recent evidence has been presented that expression of lipogenic genes is downregulated in adipose tissue of ob/ob mice as well as in human obesity, suggesting a functionally lipoatrophic state. Using (2)H(2)O labeling, we measured three adipose tissue biosynthetic processes concurrently: triglyceride (TG) synthesis, palmitate de novo lipogenesis (DNL), and cell proliferation (adipogenesis). To determine the effect of the ob/ob mutation (leptin deficiency) on these parameters, adipose dynamics were compared in ob/ob, leptin-treated ob/ob, food-restricted ob/ob, and lean control mice. Adipose tissue fluxes for TG synthesis, de novo lipogenesis (DNL), and adipogenesis were dramatically increased in ob/ob mice compared with lean controls. Low-dose leptin treatment (2 microg/day) via miniosmotic pump suppressed all fluxes to control levels or below. Food restriction in ob/ob mice only modestly reduced DNL, with no change in TG synthesis or adipogenesis. Measurement of mRNA levels in age-matched ob/ob mice showed generally normal expression levels for most of the selected lipid anabolic genes, and leptin treatment had, with few exceptions, only modest effects on their expression. We conclude that leptin deficiency per se results in marked elevations in flux through diverse lipid anabolic pathways in adipose tissue (DNL, TG synthesis, and cell proliferation), independent of food intake, but that gene expression fails to reflect these changes in flux.  相似文献   

14.
The effects of varying levels of fatty acids and carbohydrates in the diet on fatty acid synthesis from glucose in the larvae of the silkworm, Bombyx mori, were investigated. Elevation of the level of dietary fatty acids resulted in the decrease of the rate of fatty acid synthesis in the larvae. The addition of palmitate, stearate, or oleate to a diet had an inhibitory effect on fatty acid synthesis. The prolonged feeding of larvae on a diet containing a high level of fatty acid intensified the depression of the synthesis. The inhibitory effect of dietary fatty acid was found in the presence of both high and low levels of dietary carbohydrates. On the other hand, the rate of fatty acid synthesis was greatly accelerated by increasing the level of sucrose in a diet but not by the addition of starch. Furthermore, the fatty acid composition of the larval tissue shows a marked difference between the two groups of larvae fed on a diet containing sucrose and on a diet containing potato starch. Palmitic and oleic acid contents of larval tissue were increased significantly on the sucrose diet.  相似文献   

15.
Stearoyl-CoA desaturase-1 (SCD1), a critical regulator of energy metabolism, catalyzes the synthesis of monounsaturated fats. To understand the tissue-specific role of SCD1 in energy homeostasis, we used Cre-lox technology to generate mice with a liver-specific knockout of Scd1 (LKO). LKO mice were protected from high-carbohydrate, but not high-fat (HF), diet-induced adiposity and hepatic steatosis. Additionally, on a high-sucrose, very low-fat (HSVLF) diet, lipogenesis and levels of nuclear SREBP-1 and ChREBP were significantly decreased in the livers of LKO relative to Scd1lox/lox (Lox) mice. HSVLF feeding in LKO mice caused hypoglycemia and hepatic carbohydrate reduction due to an impairment of gluconeogenesis. Oleate, but not stearate, supplementation normalized adiposity, gluconeogenesis, triglyceride secretion, and hepatic lipogenesis of LKO mice. These results indicate that hepatic SCD1 expression (and thus, oleate) is required for carbohydrate-induced adiposity, but SCD1 inhibition in extrahepatic tissues is required to protect mice from HF-induced obesity and insulin resistance.  相似文献   

16.
Various studies on the effects of thyroid status on hepatic fatty acid synthesis have produced conflicting results. Several variables (e.g., plasma free fatty acid and glucose concentrations) are altered simultaneously by thyroid status and can affect fatty acid synthesis. To evaluate the effects of these variables, hepatic fatty acid synthesis (lipogenesis) was studied in isolated perfused livers from normal and triiodothyronine-treated rats. Livers were perfused with media containing either 5.5 or 25 mM glucose without fatty acid, or 5.5 mM glucose and 0.7 mM oleate. Rates of lipogenesis were determined by measurement of incorporation of 3H2O into fatty acids. Lipogenesis in livers from hyperthyroid animals exceeded that of controls, when perfused with 5.5 mM glucose with or without oleate. Perfusion with 25 mM glucose increased lipogenesis in both euthyroid and hyperthyroid groups to the same level, abolishing this difference between them. Perfusion with oleate reduced rates of lipogenesis by livers from euthyroid and hyperthyroid rats to a similar extent, but stimulated secretion of radioactive fatty acid in phospholipid and free fatty acid fractions. Oleate increased ketogenesis by livers from normal and triiodothyronine-treated rats, with higher rates of ketogenesis in the triiodothyronine-treated group. When oleate was omitted, ketogenesis in the presence of 5.5 mM glucose by the hyperthyroid group was similar to that of euthyroid controls, while ketogenesis was decreased in the hyperthyroid group relative to controls when perfused with 25 mM glucose. About 30% of the radioactivity incorporated into the total fatty acid of both groups was recovered in palmitate, with the remainder in longer chain saturated and unsaturated fatty acids. In both euthyroid and hyperthyroid groups, the ratio of triacylglycerol:phospholipid fatty acid radioactivity was not only less than predicted (based on synthetic rates of PL and TG) but also was decreased in perfusions with exogenous oleate compared to perfusions without oleate. In perfusions with oleate, both groups incorporated twice as much radioactivity into phospholipid as into triacylglycerol. The data suggest the following concepts: while hepatic fatty acid synthesis and oxidation are increased simultaneously in the hyperthyroid state, de novo synthesized fatty acids seem to be poorer substrates for oxidation than are exogenous fatty acids, and are preferentially incorporated into phospholipid, while exogenous fatty acids are better substrates for oxidation and esterification to triacylglycerol. The preferential utilization of de novo synthesized fatty acid for phospholipid synthesis may be an important physiologic adaptation insuring a constant source of fatty acid for membrane synthesis.  相似文献   

17.
The degree of fatty acid unsaturation in cell membrane lipids determines membrane fluidity, whose alteration has been implicated in a variety of disease states including diabetes, obesity, hypertension, cancer, and neurological and heart diseases. Stearoyl-CoA desaturase (SCD) is a key rate-limiting enzyme in the synthesis of unsaturated fatty acids by insertion of a cis-double bond in the Delta9 position of fatty acid substrates. Palmitate and stearate are the preferred substrates, which are converted to palmitoleate and oleate, respectively. These monounsaturated fatty acids are the major constituents of cellular membrane phospholipids and triacylglycerol stores found in adipose tissue. Two mouse and rat SCD genes (SCD1 and SCD2) have been cloned and characterized. During the differentiation of 3T3-L1 preadipocytes into adipocytes, SCD1 and SCD2 mRNAs are induced concomitant with increased de novo synthesis of palmitoleate and oleate. The physiological significance of expressing the two isoforms in the adipocytes is currently unknown. In this review we discuss the role of the SCD isoforms in metabolism and the recent findings on the differential regulation of mouse SCD genes by the antidiabetic thiazolidinediones (TZDs), during preadipocyte differentiation.  相似文献   

18.
The effect of copper and sodium intake upon liver cholesterol concentrations, fatty acid profile, and mineral concentrations were studied in the Long-Evans rat. Forty-eight male weaning rats were divided into three groups of 16 each and fed a semipurified diet containing either 0, 3, or 8 mg of added copper/kg of diet. At 100 d of age, half of the animals in each group were given 1% NaCl as drinking water and the other half was given deionized-distilled water for 12 wk. Copper deficiency in rats produced elevations in liver palmitate and oleate concentrations, but decreases in linoleate concentrations. The ratio of oleate:stearate was higher in copper deficient rats. Liver copper levels were decreased, but liver iron concentrations were elevated in copper deficient rats. Sodium intake did not have an effect on any of the parameters studied. These results suggested that dietary copper deficiency alters both liver mineral and fatty acid composition.  相似文献   

19.
The study was designed to determine whether sex and fat calories altered hepatic prostaglandin (PG) F2 alpha status; a factor which may reflect susceptibility to cancer development. For 4 weeks, groups of 8 male and 8 female F344/N rats were fed diets with 9% of energy (en%) from linoleate and 15.5, 20, 30 or 40 en% fat. Females had greater hepatic stearate, arachidonate and PGF2 alpha whereas males had greater hepatic myristate, palmitate and oleate. Females also had greater plasma stearate levels. Greater hepatic arachidonate may have stimulated PG production in females. Hepatic oleate increased and hepatic palmitate decreased with increasing en% fat (p < 0.05). Hepatic stearate was greater and hepatic linoleate less when 40 en% fat was fed compared with other levels of dietary fat (p < 0.05). Plasma oleate was greater at 30 or 40 en% fat than at lower levels of fat, whereas plasma linoleate was less at 40 en% than at 15.5% en% fat. The ability of a 30 en% fat diet, containing equal proportions of linoleate and oleate, to suppress hepatic PG production may be related to the effects of dietary fat content and composition on plasma fatty acid profiles. Because suppressed PG production has been linked with suppression of cancer development, dietary recommendations to consume 30 en% fat with a P:M ratio of 1:1 may be cancer-protective.  相似文献   

20.
Alterations of carbohydrate metabolism associated with parasitism were examined in an insect, Manduca sexta L. In insect larvae maintained on a low carbohydrate diet gluconeogenesis from [3-13C]alanine was established from the fractional 13C enrichment in trehalose, a disaccharide of glucose and the blood sugar of insects and other invertebrates. After transamination of the isotopically substituted substrate to [3-13C]pyruvate, the latter was carboxylated to oxaloacetate ultimately leading to de novo glucose synthesis and trehalose formation. Trehalose was selectively enriched with 13C at C1 and C6 followed by C2 and C5. 13C enrichment of blood sugar in insects parasitized by Cotesia congregata (Say) was significantly greater than was observed in normal animals. The relative contributions of pyruvate carboxylation and decarboxylation to trehalose labeling were determined from the 13C distribution in glutamine, synthesized as a byproduct of the tricarboxylic acid cycle. The relative contribution of carboxylation was significantly greater in parasitized larvae than in normal insects providing additional evidence of elevated gluconeogenesis due to parasitism. Despite the increased gluconeogenesis in parasitized insects the level of blood sugar was the same in all animals. Because de novo glucose synthesis does not normally maintain blood sugar level in insects maintained under these dietary conditions the findings suggest an aberrant regulation over gluconeogenesis. The 13C labeling in trehalose was nearly symmetric in all insects but the mean C1/C6 13C ratio was higher in parasitized animals suggesting a lower activity of the pentose phosphate pathway that brings about a redistribution of 13C in trehalose following de novo glucose synthesis. Additional studies with insects maintained on a high carbohydrate diet and administered [1,2-13C2]glucose confirmed a decreased level of pentose cycling during parasitism consistent with a lower level of lipogenesis. It is suggested, however, that the pentose pathway may facilitate the synthesis of trehalose from dietary carbohydrate by directing hexose phosphate cycled through the pathway to the production of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号