首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Key message

We finely map a novel resistance gene ( RpsJS ) to Phytophthora sojae in soybean. RpsJS was mapped in 138.9 kb region, including three NBS-LRR type predicted genes, on chromosome 18.

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) has been reported in most soybean-growing regions throughout the world. Development of PRR resistance varieties is the most economical and environmentally safe method for controlling this disease. Chinese soybean line Nannong 10-1 is resistant to many P. sojae isolates, and shows different reaction types to P. sojae isolates as compared with those with known Rps (Resistance to P. sojae) genes, which suggests that the line may carry novel Rps genes or alleles. A mapping population of 231 F2 individuals from the cross of Nannong 10-1 (Resistant, R) and 06-070583 (Susceptible, S) was used to map the Rps gene. The segregation fits a ratio of 3R:1S within F2 plants, indicating that resistance in Nannong 10-1 is controlled by a single dominant gene (designated as RpsJS). The results showed that RpsJS was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by SSR (simple repeat sequences) markers BARCSOYSSR_18_1859 and SSRG60752K at a distance of 0.9 and 0.4 cm, respectively. Among the 14 genes annotated in this 138.9 kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950 and Glyma18g51960) are the nucleotide-binding site and a leucine-rich repeat (NBS-LRR) type gene, which may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on marker-assisted resistance spectrum analyses of RpsJS and the mapping results, we inferred that RpsJS was a novel gene or a new allele at the Rps4, Rps5 or Rps6 loci.  相似文献   

2.

Key message

The RpsQ Phytophthora resistance locus was finely mapped to a 118-kb region on soybean chromosome 3. A best candidate gene was predicted and three co-segregating gene markers were developed.

Abstract

Phytophthora root rot (PRR), caused by Phytophthora sojae, is a major threat to sustainable soybean production. The use of genetically resistant cultivars is considered the most effective way to control this disease. The Chinese soybean cultivar Qichadou 1 exhibited a broad spectrum resistance, with a distinct resistance phenotype, following inoculation with 36 Chinese P. sojae isolates. Genetic analyses indicated that the disease resistance in Qichadou 1 is controlled by a single dominant gene. This gene locus was designated as RpsQ and mapped to a 118-kb region between BARCSOYSSR_03_0165 and InDel281 on soybean chromosome 3, and co-segregated with Insert11, Insert144 and SNP276. Within this region, there was only one gene Glyma.03g27200 encoding a protein with a typical serine/threonine protein kinase structure, and the expression pattern analysis showed that this gene induced by P. sojae infection, which was suggested as a best candidate gene of RpsQ. Candidate gene specific marker Insert144 was used to distinguish RpsQ from the other known Rps genes on chromosome 3. Identical polymerase chain reaction amplification products were produced for cultivars Qichadou 1 (RpsQ) and Ludou 4 (Rps9). All other cultivars carrying Rps genes on chromosome 3 produced different PCR products, which all lacked a 144-bp fragment present in Qichadou 1 and Ludou 4. The phenotypes of the analyzed cultivars combined with the physical position of the PRR resistance locus, candidate gene analyses, and the candidate gene marker test revealed RpsQ and Rps9 are likely the same gene, and confer resistance to P. sojae.
  相似文献   

3.

Key message

A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS–LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed.

Abstract

Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites–leucine-rich repeat (NBS–LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.
  相似文献   

4.
Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, as populations of P. sojae are highly diverse and quick to adapt, and can be overcome 8–15 years after deployment. Thus, it is important to identify novel Rps genes for development of resistant soybean cultivars. PI 567139B is a soybean landrace carrying excellent resistance to nearly all predominant P. sojae races in Indiana. A mapping population consisting of 245 F2 individuals and 403 F2:3 families was developed from a cross between PI 567139B and the susceptible cultivar ‘Williams’, and used to dissect the resistance carried by PI 567139B. We found that the resistance in PI 567139B was conferred by two independent Rps genes, designated RpsUN1 and RpsUN2. The former was mapped to a 6.5 cM region between SSR markers Satt159 and BARCSOYSSR_03_0250 that spans the Rps1 locus on chromosome 3, while the latter was mapped to a 3.0 cM region between BARCSOYSSR_16_1275 and Sat_144, approximately 3.0–3.4 cM upstream of Rps2 on chromosome 16. According to the ‘Williams 82’ reference genome sequence, both regions are highly enriched with NBS-LRR genes. Marker assisted resistance spectrum analyses of these genes with 16 isolates of P. sojae, in combination with the mapping results, suggested that RpsUN1 was likely to be a novel allele at the Rps1 locus, while RpsUN2 was more likely to be a novel Rps gene.  相似文献   

5.

Key message

The Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence.

Abstract

Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C. lindemuthianum have been identified. The Andean cultivar JaloEEP558 was reported to carry Co-x on chromosome 1, conferring resistance to the highly virulent strain 100. To fine map Co-x, 181 recombinant inbred lines derived from the cross between JaloEEP558 and BAT93 were genotyped with polymerase chain reaction (PCR)-based markers developed using the genome sequence of the Andean genotype G19833. Analysis of RILs carrying key recombination events positioned Co-x at one end of chromosome 1 to a 58 kb region of the G19833 genome sequence. Annotation of this target region revealed eight genes: three phosphoinositide-specific phospholipases C (PI-PLC), one zinc finger protein and four kinases, suggesting that Co-x is not a classical nucleotide-binding leucine-rich encoding gene. In addition, we identified and characterized the seven members of common bean PI-PLC gene family distributed into two clusters located at the ends of chromosomes 1 and 8. Co-x is not a member of Co-1 allelic series since these two genes are separated by at least 190 kb. Comparative analysis between soybean and common bean revealed that the Co-x syntenic region, located at one end of Glycine max chromosome 18, carries Rhg1, a major QTL contributing to soybean cyst nematode resistance. The PCR-based markers generated in this study should be useful in marker-assisted selection for pyramiding Co-x with other R genes.  相似文献   

6.

Key Message

The Rag2 region was frequently identified among 21 F 2 populations evaluated for soybean aphid resistance, and dominant gene action and single-gene resistance were also commonly identified.

Abstract

The soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] is one of the most important insect pests of soybean [Glycine max (L.) Merr] in the northern USA and southern Canada, and four resistance loci (Rag1rag4) have been discovered since the pest was identified in the USA in 2000. The objective of this research was to determine whether resistance expression in recently identified soybean aphid-resistant plant introductions (PIs) was associated with the four Rag loci using a collection of 21 F2 populations. The F2 populations were phenotyped with soybean aphid biotype 1, which is avirulent on plants having any of the currently identified Rag genes, using choice tests in the greenhouse and were tested with genetic markers linked to the four Rag loci. The phenotyping results indicate that soybean aphid resistance is controlled by a single dominant gene in 14 PIs, by two genes in three PIs, and four PIs had no clear Mendelian inheritance patterns. Genetic markers flanking Rag2 were significantly associated with aphid resistance in 20 PIs, the Rag1 region was significantly identified in five PIs, and the Rag3 region was identified in one PI. These results show that single dominant gene action at the Rag2 region may be a major source for aphid resistance in the USDA soybean germplasm collection.  相似文献   

7.
Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdemann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the USA. Partial resistance is as effective in managing this disease as single-gene (Rps gene)-mediated resistance and is more durable. The objective of this study was to identify quantitative trait loci (QTL) associated with partial resistance to P. sojae in PI 398841, which originated from South Korea. A population of 305 F7:8 recombinant inbred lines derived from a cross of OX20-8 × PI 398841 was used to evaluate partial resistance against P. sojae isolate C2S1 using a tray test. Composite interval mapping using a genome-wide logarithm of odd (LOD) threshold detected three QTL on chromosomes 1, 13, and 18, which individually explained 4–16 % of the phenotypic variance. Seven additional QTL, accounting for 2–3 % of phenotypic variance each, were identified using chromosome-wide LOD thresholds. Seven of the ten QTL for resistance to P. sojae were contributed by PI 398841. Seven QTL co-localized with known Rps genes and previously reported QTL for soil-borne root pathogens, isoflavone, and seed oil. Three QTL on chromosomes 3, 13, and 18 co-localized with known Rps genes, but PI 398841 did not exhibit an Rps gene-mediated resistance response following inoculation with 48 different isolates of P. sojae. PI 398841 is potentially a source of novel genes for improving soybean cultivars for partial resistance to P. sojae.  相似文献   

8.

Key message

Bulked segregant analysis (BSA) using Affymetrix GeneChips revealed candidate genes underlying the major QTL for Phytophthora capsici resistance in Capsicum . Using the candidate genes, reliable markers for Phytophthora resistance were developed and validated.

Abstract

Phytophthora capsici L. is one of the most destructive pathogens of pepper (Capsicum spp.). Resistance of pepper against P. capsici is controlled by quantitative trait loci (QTL), including a major QTL on chromosome 5 that is the predominant contributor to resistance. Here, to maximize the effect of this QTL and study its underlying genes, an F2 population and recombinant inbred lines were inoculated with P. capsici strain JHAI1-7 zoospores at a low concentration (3 × 103/mL). Resistance phenotype segregation ratios for the populations fit a 3:1 and 1:1 (resistant:susceptible) segregation model, respectively, consistent with a single dominant gene model. Bulked segregant analysis (BSA) using Affymetrix GeneChips revealed a single position polymorphism (SPP) marker mapping to the major QTL. When this SPP marker (Phyto5SAR) together with other SNP markers located on chromosome 5 was used to confirm the position of the major QTL, Phyto5SAR showed the highest LOD value at the QTL. A scaffold sequence (scaffold194) containing Phyto5SAR was identified from the C. annuum genome database. The scaffold contained two putative NBS-LRR genes and one SAR 8.2A gene as candidates for contributing to P. capsici resistance. Markers linked to these genes were developed and validated by testing 100 F1 commercial cultivars. Among the markers, Phyto5NBS1 showed about 90 % accuracy in predicting resistance phenotypes to a low-virulence P. capsici isolate. These results suggest that Phyto5NBS1 is a reliable marker for P. capsici resistance and can be used for identification of a gene(s) underlying the major QTL on chromosome 5.  相似文献   

9.

Background

Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins.

Results

We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants.

Conclusion

Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.  相似文献   

10.

Key message

Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao.

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F2 individuals and 196 F7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.
  相似文献   

11.

Key message

Phytophthora infestans resistant somatic hybrids of S. × michoacanum (+) S. tuberosum and autofused 4 x S. × michoacanum were obtained. Our material is promising to introgress resistance from S. × michoacanum into cultivated potato background.

Abstract

Solanum × michoacanum (Bitter.) Rydb. (mch) is a wild diploid (2n = 2x = 24) potato species derived from spontaneous cross of S. bulbocastanum and S. pinnatisectum. This hybrid is a 1 EBN (endosperm balance number) species and can cross effectively only with other 1 EBN species. Plants of mch are resistant to Phytophthora infestans (Mont) de Bary. To introgress late blight resistance genes from mch into S. tuberosum (tbr), genepool somatic hybridization between mch and susceptible diploid potato clones (2n = 2x = 24) or potato cultivar Rywal (2n = 4x = 48) was performed. In total 18,775 calli were obtained from postfusion products from which 1,482 formed shoots. The Simple Sequence Repeat (SSR), Cleaved Amplified Polymorphic Sequences (CAPS) and Random Amplified Polymorphic DNA (RAPD) analyses confirmed hybrid nature of 228 plants and 116 autofused 4x mch. After evaluation of morphological features, flowering, pollen stainability, tuberization and ploidy level, 118 somatic hybrids and 116 autofused 4x mch were tested for late blight resistance using the detached leaf assay. After two seasons of testing three somatic hybrids and 109 4x mch were resistant. Resistant forms have adequate pollen stainability for use in crossing programme and are a promising material useful for introgression resistance from mch into the cultivated potato background.  相似文献   

12.
The effects of race-specific resistance as conditioned by Rps genes (rps, Rps1-k, Rps2, Rps3, Rps6) in two genetic backgrounds (Williams & Harosoy) on accumulation of soluble peroxidases were determined by a soybean peroxidase capture assay (SPCA) after inoculation with P. sojae races 2, 7, or 25. Peroxidase activity increased in all isolines during the 72 h after inoculation, but reactions varied depending on time after inoculation, genetic background, Rps gene and P. sojae race. Peroxidase activity was higher in race-specific resistant than in susceptible reactions at 72 h. after inoculation, except for plants with the Rps2 gene which confers a unique form of root resistance in addition to the whole plant race-specific resistance. Williams isolines had larger increases in peroxidase activity than Harosoy isolines when data were averaged across Rps genes, and was most evident when plants were inoculated with race 2. When soybeans were inoculated with race 7 Rps1-k resistant plants had the highest increase in peroxidase activity, but Rps2 susceptible plants had a significantly higher peroxidase activity than plants with rps, Rps3, and Rps6 that were also susceptible. Results from inoculations with race 25 were somewhat different, Rps2 resistant plants had the highest increase in peroxidase activity; however, plants with the Rps3 or Rps6 gene that were also resistant did not have a significantly higher peroxidase activity than susceptible plants with the rps or Rps1-k gene.  相似文献   

13.

Key message

Wheat– Aegilops speltoides recombinants carrying stem rust resistance genes Sr32 and SrAes1t effective against Ug99 and PCR markers for marker-assisted selection.

Abstract

Wild relatives of wheat are important resources for new rust resistance genes but underutilized because the valuable resistances are often linked to negative traits that prevent deployment of these genes in commercial wheats. Here, we report ph1b-induced recombinants with reduced alien chromatin derived from E.R. Sears’ wheat–Aegilops speltoides 2D-2S#1 translocation line C82.2, which carries the widely effective stem rust resistance gene Sr32. Infection type assessments of the recombinants showed that the original translocation in fact carries two stem rust resistance genes, Sr32 on the short arm and a previously undescribed gene SrAes1t on the long arm of chromosome 2S#1. Recombinants with substantially shortened alien chromatin were produced for both genes, which confer resistance to stem rust races in the TTKSK (Ug99) lineage and representative races of all Australian stem rust lineages. Selected recombinants were back crossed into adapted Australian cultivars and PCR markers were developed to facilitate the incorporation of these genes into future wheat varieties. Our recombinants and those from several other labs now show that Sr32, Sr39, and SrAes7t on the short arm and Sr47 and SrAes1t on the long arm of 2S#1 form two linkage groups and at present no rust races are described that can distinguish these resistance specificities.  相似文献   

14.
15.
16.
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T2–T4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.  相似文献   

17.
Phytophthora root rot (PRR), caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.]. Deployment of resistance genes is the most economical and effective way of controlling the disease. The soybean cultivar ‘Yudou 29’ is resistant to many P. sojae isolates in China. The genetic basis of the resistance in ‘Yudou 29’ was elucidated through an inheritance study and molecular mapping. In response to 25 P. sojae isolates, ‘Yudou 29’ displayed a new resistance reaction pattern distinct from those of differentials carrying known Rps genes. A population of 214 F2:3 families from a cross between ‘Jikedou 2’ (PRR susceptible) and ‘Yudou 29’ was used for Rps gene mapping. The segregation fit a ratio of 1:2:1 for resistance:segregation:susceptibility within this population, indicating that resistance in ‘Yudou 29’ is controlled by a single dominant gene. This gene was temporarily named RpsYD29 and mapped on soybean chromosome 03 (molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50 and Satt1k4b at a genetic distance of 0.5 and 0.2 cM, respectively. Two nucleotide binding site-leucine rich repeat (NBS-LRR) type genes were detected in the 204.8 kb region between SattWM82-50 and Satt1k4b. These two genes showed high similarity to Rps1k in amino acid sequence and could be candidate genes for PRR resistance. Based on the phenotype reactions and the physical position on soybean chromosome 03, RpsYD29 might be a novel allele at, or a novel gene tightly linked to, the Rps1 locus.  相似文献   

18.

Key message

Our results indicate that overexpression of OsSPL1 in transgenic tobacco plants attenuated disease resistance and facilitated programmed cell death.

Abstract

Long-chain base phosphates including sphingosine-1-phosphate have been shown to act as signaling mediators in regulating programmed cell death (PCD) and stress responses in mammals. In the present study, we characterized a rice gene OsSPL1, encoding a putative sphingosine-1-phosphate lyase that is involved in metabolism of sphingosine-1-phosphate. Expression of OsSPL1 was down-regulated in rice plants after treatments with salicylic acid, benzothiadiazole and 1-amino cyclopropane-1-carboxylic acid, but was induced by infection with a virulent strain of Magnaporthe oryzae, the causal agent of rice blast disease. Transgenic tobacco lines with overexpression of OsSPL1 were generated and analyzed for the possible role of OsSPL1 in disease resistance response and PCD. The OsSPL1-overexpressing tobacco plants displayed increased susceptibility to infection of Pseudomonas syringae pv. tabaci (Pst), the causal agent of wildfire disease, showing severity of disease symptom and bacterial titers in inoculated leaves, and attenuated pathogen-induced expression of PR genes after infection of Pst as compared to the wild-type and vector-transformed plants. Higher level of cell death, as revealed by dead cell staining, leakage of electrolyte and expression of hypersensitive response indicator genes, was observed in the OsSPL1-overexpressing plants after treatment with fumonisin B1, a fungal toxin that induces PCD in plants. Our results suggest that OsSPL1 has different functions in regulating disease resistance response and PCD in plants.  相似文献   

19.
An integrated LC-MS and NMR metabolomic study was conducted to investigate metabolites whose formation was induced by lactofen (1), a soybean (Glycine max L.) disease resistance-inducing herbicide. First, LC-MS analyses of control and lactofen (1)-induced soybean extracts were performed. The LC-MS raw data were then processed by a custom designed bioinformatics program to detect the induced metabolites so formed. Finally, structures of unknown induced metabolites were determined on the basis of their 1D and 2D NMR spectroscopic data. Structure of two previously unreported compounds, 7,8-dihydroxy-4′-methoxy-3′-prenylisoflavone (2) and 7-hydroxy-4′,8-dimethoxy-3′-prenylisoflavone (3) were elucidated together with four known prenylated compounds, 3′-prenyldaidzein (4), 8-prenyldaidzein (5), 3′-prenylgenistein (6), and 4-prenylcoumestrol (7). Compounds (2-6) are reported for the first time in soybean, as are the 13C chemical shift assignments for compound (7). Formation of these six prenylated compounds was also induced by the primary defense glucan elicitor from the cell wall of the pathogen Phytophthora sojae (Kauf. and Gerde.), further suggesting a potential role in soybean defense. These results highlight the metabolic flexibility within soybean secondary product pathways and suggest that prenylation may be associated with defense responses. Moreover, this study demonstrates a promising future approach using metabolomics on elicitor-induced plants for discovery of unknown compounds even in relatively well studied plants.  相似文献   

20.

Key message

The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level.

Abstract

Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis over the cultivar Williams 82. The overall objective of this research was to map Als1 in the soybean genome and to determine the nucleotidic changes conferring resistance to SU. Four nucleotide sequences (GmAhas1–4) showing high homology with the Arabidopsis thaliana acetohydroxyacid synthase (AHAS, EC 4.1.3.18) gene sequence were identified by in silico analysis, PCR-amplified from the SU-resistant line BTK323STS and sequenced. Expression analysis showed that GmAhas1, located on chromosome 4 by in silico analysis, is the most expressed sequence in true leaves. F2:3 families derived from the cross between susceptible and resistant lines were evaluated for SU resistance. Mapping results indicate that the locus als1 is located on chromosome 4. Sequence comparison of GmAhas1 between BTK323STS and Williams 82 showed a single nucleotide change from cytosine to thymine at position 532. This transversion generates an amino acid change from proline to serine at position 197 (A. thaliana nomenclature) of the AHAS catalytic subunit. An allele-specific marker developed for the GmAhas1 mutant sequence cosegregated with SU resistance in the F2 population. Taking together, the mapping, expression and sequencing results indicate that the GmAhas1 sequence corresponds to the Als1 gene sequence controlling SU resistance in soybean. The molecular breeding tools described herein create the basis to speed up the identification of new mutations in soybean AHAS leading to enhanced levels of resistance to SU or to other families of AHAS inhibitor herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号