首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Acinetobacter calcoaceticus utilizes catechin as sole carbon source. The chromosomal region involved in catechin catabolism was cloned in Escherichia coli DH5alpha from the genomic DNA of A. calcoaceticus. A recombinant E. coli containing 9.2 kb DNA fragment of A. calcoaceticus inserted in pUC19 showed a halo zone around the colony in plate assays, indicating the catechin utilizing ability of the clone. Enzyme assays revealed the expression of the cloned DNA fragment of A. calcoaceticus. High performance thin layer chromatography confirmed protocatechuic acid and phloroglucinol carboxylic acid as cleavage products of catechin in A. calcoaceticus and the catechin degrading ability of the clones. A. calcoaceticus followed the beta-ketoadipate pathway for catechin degradation. The sub-clone (pASCI) of this insert was sequenced and analyzed. The sequence showed three major ORFs but only ORF 2 showed similarities to other aromatic oxygenases and the sequence of ORF 2 was submitted to GenBank (AF369935).  相似文献   

2.
The amidation of C-terminal glycine-extended peptides has been analyzed by the use of a truncated type A peptidylglycine alpha-amidating enzyme (alpha-AE) encoded by cDNA prepared with RNA from rat medullary thyroid carcinoma (MTC) cells. Mouse C127 cells transfected with the rat MTC cDNA encoding the truncated type A alpha-AE secrete the expected 75-kDa enzyme into the culture medium. Medium conditioned with the transfected C127 cells converts both dansyl-Tyr-Val-Gly and dansyl-Tyr-Val-alpha-hydroxyglycine to dansyl-Tyr-Val-NH2 at levels which are approximately 1000 times higher than the levels found in medium conditioned with untransfected C127 cells. This result indicates that rat type A alpha-AE alone catalyzes a two-step reaction involving an initial hydroxylation of peptidyl-Gly followed by conversion of the peptidyl-alpha-hydroxyglycine intermediate to the amidated product. The involvement of a separate, second enzyme to convert peptidyl-alpha-hydroxyglycine to peptidyl-NH2 is not necessary in this system. The initial hydroxylation step is rate-determining at infinite substrate concentration and requires a reducing equivalent, molecular oxygen, and copper.  相似文献   

3.
The physiological role of a bifunctional enzyme, 3,4-dihydrocoumarin hydrolase (DCH), which is capable of both hydrolysis of ester bonds and organic acid-assisted bromination of organic compounds, was investigated. Purified DCH from Acinetobacter calcoaceticus F46 catalysed dose- and time-dependent degradation of peracetic acid. The gene (dch) was cloned from the chromosomal DNA of the bacterium. The dch ORF was 831 bp long, corresponding to a protein of 272 amino acid residues, and the deduced amino acid sequence showed high similarity to those of bacterial serine esterases and perhydrolases. The dch gene was disrupted by homologous recombination on the A. calcoaceticus genome. The dch disruptant strain was more sensitive to growth inhibition by peracetic acid than the parent strain. On the other hand, the recombinant Escherichia coli cells expressing dch were more resistant to peracetic acid. A putative catalase gene was found immediately downstream of dch, and Northern blot hybridization analysis revealed that they are transcribed as part of a polycistronic mRNA. These results suggested that in vivo DCH detoxifies peroxoacids in conjunction with the catalase, i.e. peroxoacids are first hydrolysed to the corresponding acids and hydrogen peroxide by DCH, and then the resulting hydrogen peroxide is degraded by the catalase.  相似文献   

4.
A beta-lactamase was purified 430-fold from the culture supernatant of Acinetobacter calcoaceticus by ion exchange chromatography on CM-Sephadex and affinity chromatography on phenylboronic-acid-agarose. The purified enzyme was homogeneous as judged by SDS-PAGE, and was characterized with respect to molecular mass (38 and 41 kDa by gel filtration on Sephadex G-75 and SDS-PAGE, respectively), pH optimum (pH 7.0), temperature optimum (45 degrees C) and isoelectric point (9.3). The beta-lactamase showed mainly cephalosporinase activity. It was inhibited by cloxacillin, carbenicillin, penicillanic acid sulphone (sulbactam) and aztreonam. It was not inhibited by clavulanic acid up to a concentration of 0.25 mM. Neither EDTA nor p-chlormercuribenzoate, up to concentrations of 1 or 100 mM, respectively, affected activity. According to these characteristics, it is a typical CEP-N cephalosporinase.  相似文献   

5.
Grape seed polyphenols have been reported to exhibit a broad spectrum of biological properties. In this study, eleven phenolic phytochemicals from grape seeds were purified by gel chromatography and high performance liquid chromatography (HPLC). The antioxidant activities of five representative compounds with different structure type were assessed by the free radical-scavenging tests and the effects of the more potent phytochemicals on oxidative damage to DNA in mice spleen cells were investigated. Procyanidin B4, catechin, epicatechin and gallic acid reduced ferricyanide ion and scavenged the stable free radical, alpha, alpha-diphenyl-beta-picrylhydrazyl (DPPH) much more effectively than the known antioxidant vitamin ascorbic acid, while epicatechin lactone A, an oxidative derivative of epicatechin, did not reduce ferricyanide ion appreciably at concentrations used and was only about half as effective on free radical-scavenging as epicatechin. Mice spleen cells, when pre-incubated with relatively low concentration of procyanidin B4, catechin or gallic acid, were less susceptible to DNA damage induced by hydrogen peroxide (H2O2), as evaluated by the comet assay. In contrast, noticeable DNA damage was induced in mice spleen cells by incubating with higher concentration (150 microM) of catechin. Collectively, these data suggest that procyanidin B4, catechin, gallic acid were good antioxidants, at low concentration they could prevent oxidative damage to cellular DNA. But at higher concentration, these compounds may induce cellular DNA damage, taking catechin for example, which explained the irregularity of dose-effect relationship.  相似文献   

6.
The microbial degradation of hard coal implies the cleavage of diaryl ether linkages in the coal macromolecule. We investigated the biodegradation of diphenylether as a model compound representing this substructure of coal. A bacterial strain isolated from soil and identified as Pseudomonas cepacia, was able to grow with diphenylether as sole source of carbon. During microbial growth, three metabolites were detected in the culture supernatant by high pressure liquid chromatography. As product of ring hydroxylation and subsequent rearomatization, 2,3-dihydroxydiphenylether was identified by UV, mass and nuclear magnetic resonance spectrometry and gas chromatography analyses. The cleavage of the ether linkage led to the formation of phenol and 2-pyrone-6-carboxylic acid, the latter being not further degraded by Pseudomonas cepacia. The possible cleavage mechanism of the ether linkage is discussed.Non-standard abbreviations DPE diphenylether - PCA 2-pyrone-6-carboxylic acid - GC gas chromatography - MS mass spectrometry - HPLC high pressure liquid chromatography  相似文献   

7.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

8.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

9.
Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)≤0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557–564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO≤0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.  相似文献   

10.
The phenols of Paul's Scarlet rose stems and stem-derived cell cultures have been analyzed using C18-reversed-phase high performance liquid chromatography.

Rose stems were found to contain gallic acid, (+)catechin, (−)epicatechin, the dimers (−)epicatechin-(+)catechin and (+)catechin-(+)catechin, a polymeric procyanidin, ferulic acid, and several gallotannins. In contrast, a cell suspension of Paul's Scarlet rose which has been maintained in culture for over 25 years contained only low levels of gallic acid and (−)epicatechin-(+)catechin. The phenol content of a second rose cell line which was started from the same initial isolate in 1957, but which was maintained in a laboratory other than our own was quantitatively and qualitatively similar to the cell line kept in our laboratory for the last 20 years. A third cell line which we started 6 months ago contained a wide variety of phenols, most of which were in common with those of rose stems.

Selective subculturing of smaller cell clumps of our oldest cell line failed to enhance either the quantities or the diversity of phenols which accumulated in these cultured cells. Possible reasons for the failure of selective subculturing to enhance phenol levels in this long-established cell line are discussed.

  相似文献   

11.
The timely differentiation of Mycobacterium tuberculosis complex (MTC) and non-tubercular mycobacterium (NTM) species is urgently needed in patient care since the routine laboratory method is time consuming and cumbersome. An easy and cheap method which can successfully distinguish MTC from NTM was established and evaluated. 38 mycobacterial type and reference strains and 65 clinical isolates representing 10 species of mycobacterium were included in this study. Metabolites of p-nitrobenzoic acid (PNB) reduction were identified using liquid chromatography and tandem mass spectrometry (LC/MS/MS). A spectrophotometric method was developed to detect these metabolites, which was evaluated on a number of MTC and NTM species. All of the tested NTM species and strains reduced PNB to p-aminobenzoic acid (PABA), while none of the MTC strains showed a similar activity. Spectrophotometric detection of PABA had 100% sensitivity and specificity for MTC and NTM differentiation among the type strains and the clinical isolates tested. PABA was identified as one of the metabolites of PNB reduction. All the tested NTM species metabolized PNB to PABA whereas the MTC members lacked this activity. A simple, specific and cost-effective method based on PABA production was established in order to discriminate MTC from NTM from cultured organisms.  相似文献   

12.
Antioxidants were found to protect against the genotoxic effects of chemical and physical mutagenic and clastogenic agents. This study focused on the capacity of antioxidants to reduce an intrinsic and persistent chromosome instability. As a model system, strains of C127 cells, which were transformed by bovine papillomavirus (BPV) DNA and which carry BPV DNA varying from 20 to 160 copies, were used. Transformed cells of 10 different strains showed a persistently high incidence of mitotic irregularities detectable at anaphase and telophase (27.3-58.9%), an elevated frequency of cells with micronuclei (6.6-34.7%), and a broad spectrum of nuclear sizes, as measured by image analysis. A 3-day exposure to retinoic acid, retinol, beta-carotene, canthaxanthin, ascorbic acid and ellagic acid greatly reduced the degree of chromosome instability, whereas catechin, eugenol and pyrogallol showed a smaller inhibitory effect, and curcumin had no detectable effect on the frequency of mitotic irregularities. After withdrawal of retinoic acid treatment, the high levels of chromosome instability reappeared. The possibility that the protective effect of the retinoids and carotenoids examined in the model system points to their beneficial administration to human cells with an intrinsic or acquired chromosome instability is discussed.  相似文献   

13.
Acinetobacter sp. strain ST-550 produces indigo from indole in the presence of a large volume of diphenylmethane and a high level of indole. Particular proteins increased remarkably in strain ST-550 grown in the two-phase culture system for indigo production. One of the proteins showed a N-terminal amino acid sequence that was identical to that of the largest subunit of phenol hydroxylase (MopN) from A. calcoaceticus NCBI8250. The indigo-producing activity was strongly induced when ST-550 was grown with phenol as a sole carbon source. Genes coding for the multicomponent phenol hydroxylase were cloned, based on the homology with mopKLMOP from A. calcoaceticus NCBI8250. Escherichia coli carrying the genes produced indigo from indole. E. coli JA300 and its cyclohexane-resistant mutant, OST3410, carrying the hydroxylase genes and the NADH regeneration system were grown in the two-phase culture system for indigo production. The OST3410 recombinant produced 52 microg indigo ml(-1) of medium in the presence of diphenylmethane. This productivity was 4.3-fold higher than that of the JA300 recombinant.  相似文献   

14.
This paper reports the isolation and characterization of phenol hydroxylase (PH) from a strain belonging to the Acinetobacter genus. An Acinetobacter radioresistens culture, grown on phenol as the only carbon and energy source, produced a multicomponent enzyme system, located in the cytoplasm and inducible by the substrate, that is responsible for phenol conversion into catechol. Because of the wide diffusion of phenol as a contaminant, the present work represents an initial step towards the biotechnological treatment of waste waters containing phenol. The reductase component of this PH system has been purified and isolated in large amounts as a single electrophoretic band. The protein contains a flavin cofactor (FAD) and an iron-sulfur cluster of the type [2Fe-2S]. The function of this reductase is to transfer reducing equivalents from NAD(P)H to the oxygenase component. In vitro, the electron acceptors can be cytochrome c as well as other molecules such as 2, 6-dichlorophenolindophenol, potassium ferricyanide, and Nitro Blue tetrazolium. The molecular mass of the reductase was determined to be 41 kDa by SDS/PAGE and 38.8 kDa by gel permeation; its isoelectric point is 5.8. The N-terminal sequence is similar to those of the reductases from A. calcoaceticus NCIB 8250 (10/12 identity) and Pseudomonas CF600 (8/12 identity) PHs, but much less similar (2/12 identity) to that of benzoate dioxygenase reductase from A. calcoaceticus BD413. Similarly, the internal peptide sequence of the A. radioresistens PH reductase displays a good level of identity (9/10) with both A. calcoaceticus NCIB 8250 and Pseudomonas CF600 PH reductase internal peptide sequences but a poorer similarity (3/10) to the internal peptide sequence of benzoate dioxygenase reductase from A. calcoaceticus BD413.  相似文献   

15.
16.
G M Za?tsev 《Mikrobiologiia》1988,57(4):550-553
A mixed microbial culture (Acinetobacter calcoaceticus INMI-KZ-3 and Alcaligenes faecalis INMI-KZ-5) completely utilises 3-chlorobenzoic acid (3-CBA), and the liberation of chlorine atoms is 100% of the theoretically possible one. A. faecalis growth in the mixed culture at the account of 2-chloro-cis,cis-muconic acid which is accumulated in the course of 3-CBA metabolism by A. calcoaceticus INMI-KZ-3.  相似文献   

17.
18.
Degradation of cytochrome P-450 was studied in adult rat liver parenchymal cells in primary monolayer culture. In cells incubated in standard culture medium, the amount of cytochrome P-450 decreased at an accelerated rate relative to either the rate of degradation of total protein in the cells or the turnover of cytochrome P-450 in vivo. This change was succeeded by a spontaneous increase in the activity of haem oxygenase, an enzyme system that converts haem into bilirubin in vitro, measured in extracts from the cultured cells. This finding suggests that the rate of cytochrome P-450 breakdown may be controlled by factor(s) other than the activity of haem oxygenase. The decline in cytochrome P-450 and the subsequent increase in haem oxygenase activity was prevented by incubation of hepatocytes in medium containing an inhibitor of protein synthesis such as cycloheximide, puromycin, actinomycin D, or azaserine. The effect of cycloheximide appeared to be due to decreased breakdown of microsomal (14)C-labelled haem. By contrast, cycloheximide was without effect on the degradation of total protein, measured either in homogenates or in microsomal fractions prepared from the cultured cells. These results suggest that the conditions of cell culture stimulate selective degradation of cytochrome P-450 by a process that is inhibited by cycloheximide and hence may require protein synthesis. The findings in culture were verified in parallel studies of cytochrome P-450 degradation in vivo. After administration of bromobenzene, the degradation of the haem moiety of cytochrome P-450 was accelerated in vivo in a manner resembling that observed in cultured hepatocytes. Administration of cycloheximide to either bromobenzene-treated rats or to untreated rats decreased the degradation of the haem moiety of cytochrome P-450. However, the drug failed to affect degradation of haem not associated with cytochrome P-450, suggesting that cycloheximide is not a general inhibitor of haem oxidation in the liver. These findings confirm that the catabolism of hepatic cytochrome P-450 haem is controlled by similar cycloheximide-sensitive processes in the basal steady state in vivo, as stimulated by bromobenzene in vivo, or in hepatocytes under the conditions of cell culture. We conclude that the rate-limiting step in this process appears to require protein synthesis and precedes cleavage of the haem ring.  相似文献   

19.
Two novel conditional broad-host-range cell lysis systems have been developed for the study of natural transformation in bacteria and the environmental fate of DNA released by cell death. Plasmid pDKL02 consists of lysis genes S, R, and Rz from bacteriophage lambda under the control of the Ptac promoter. The addition of inducer to Escherichia coli, Acinetobacter calcoaceticus, or Pseudomonas stutzeri containing plasmid pDKL02 resulted in cell lysis coincident with the release of high amounts of nucleic acids into the surrounding medium. The utility of this lysis system for the study of natural transformation with DNA released from lysed cells was assessed with differentially marked but otherwise isogenic donor-recipient pairs of P. stutzeri JM300 and A. calcoaceticus BD4. Transformation frequencies obtained with lysis-released DNA and DNA purified by conventional methods and assessed by the use of antibiotic resistance (P. stutzeri) or amino acid prototrophy (A. calcoaceticus) for markers were comparable. A second cell lysis plasmid, pDKL01, contains the lysis gene E from bacteriophage phi X174 and causes lysis of E. coli and P. stutzeri bacteria by activating cellular autolysins. Whereas DNA released from pDKL02-containing bacteria persists in the culture broth for days, that from induced pDKL01-containing bacteria is degraded immediately after release. The lysis system involving pDKL02 is thus useful for the study of both the fate of DNA released naturally into the environment by dead cells and gene transfer by natural transformation in the environment in that biochemically unmanipulated DNA containing defined sequences and coding for selective phenotypes can be released into a selected environment at a specific time point. This will allow kinetic measurements that will answer some of the current ecological questions about the fate and biological potential of environmental DNA to be made.  相似文献   

20.
Summary The conditions for the efficient production of alkannin pigments by a suspension culture of Alkanna tinctoria were established. Pectin, polygalacturonic acid sodium salt and galactan increased the pigment production but not as much as agar did. A marked increase in the pigment content in cells and medium of suspension cultures after treatment with methyl jasmonate was observed. It was shown, applying a two-layer culture method, that mineral and olive oils intensified the pigment secretion from cells to the medium but did not enhance significantly their synthesis. Thin layer chromatography and high performance liquid chromatography methods showed that two main esters of alkannin are responsible for the characteristic colour of A. tinctoria suspension cultures.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole 3-acetic acid - NAA 1-naphthaleneacetic acid - MeJA methyl jasmonate - TLC thin layer chromatography - HPLC high performance liquid chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号