首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human serum heme–albumin (HSA–heme–Fe) displays reactivity and spectroscopic properties similar to those of heme proteins. Here, the nitrite reductase activity of ferrous HSA–heme–Fe [HSA–heme–Fe(II)] is reported. The value of the second-order rate constant for the reduction of $ {\text{NO}}_{2}^{ - } $ to NO and the concomitant formation of nitrosylated HSA–heme–Fe(II) (i.e., k on) is 1.3 M?1 s?1 at pH 7.4 and 20 °C. Values of k on increase by about one order of magnitude for each pH unit decrease between pH 6.5 to 8.2, indicating that the reaction requires one proton. Warfarin inhibits the HSA–heme–Fe(II) reductase activity, highlighting the allosteric linkage between the heme binding site [also named the fatty acid (FA) binding site 1; FA1] and the drug-binding cleft FA2. The dissociation equilibrium constant for warfarin binding to HSA–heme–Fe(II) is (3.1 ± 0.4) × 10?4 M at pH 7.4 and 20 °C. These results: (1) represent the first evidence for the $ {\text{NO}}_{2}^{ - } $ reductase activity of HSA–heme–Fe(II), (2) highlight the role of drugs (e.g., warfarin) in modulating HSA(–heme–Fe) functions, and (3) strongly support the view that HSA acts not only as a heme carrier but also displays transient heme-based reactivity.  相似文献   

2.
Cytochrome c oxidase (CcOX) containing binuclear heme a3-Cu B centre (BNC) mechanises the process of electron transfer in the last phase of cellular respiration. The molecular modelling based structural analysis of CcOX – heme a3-Cu B complex was performed and the disturbance to this complex under cyanide poisoning conditions was investigated. Taking into consideration the results of molecular docking studies, new chemical entities were developed for clipping cyanide from the enzyme and restoring its normal function. It was found that the molecules obtained by combining syringaldehyde, oxindole and chrysin moieties bearing propyl/butyl spacing groups occupy the BNC region and effectively remove cyanide bound to the enzyme. The binding constant of compound 2 with CN was 2.3 × 105 M−1 and its ED50 for restoring the cyanide bound CcOX activity in 10 min was 16 µM. The compound interacted with CN over the pH range 5–10. The comparison of the loss of enzymatic activity in the presence of CN and resumption of enzymatic activity by compound 2 mediated removal of CN indicated the efficacy of the compound as antidote of cyanide.  相似文献   

3.
The biodetoxification of cyanide-rich wastewater has become increasingly popular because of its cost-effectiveness and environmental friendliness. Therefore, we have developed an effective method, optimised by response surface methodology, for detoxifying cyanide-rich wastewater using Bacillus sp. CN-22, which was newly isolated from a cyanide-contaminated electroplating sludge and could tolerate a CN? concentration of 700 mg L?1. The concentration of CN? in the treated wastewater decreased from 200 to 6.62 mg L?1 after cultivation with 2.38 % inocula for 72 h on the medium, consisting of 0.05 % KH2PO4, 0.15 % K2HPO4, 1.0 mM MgCl2, 1.0 mM FeCl3, 0.1 % NH4Cl, and 0.1 % glycerol. The CN? degradability of 96.69 % is similar to the predicted value of 96.82 %. The optimal cultivation conditions were controlled as follows: initial pH, 10.3; temperature, 31 °C; and rotary speed, 193 rpm. The maintenance of higher pH in the overall treatment procedures may avoid the production of volatile HCN and the risk associated with cyanide detoxification. Additionally, the bacterial strain Bacillus sp. CN-22, with its potent cyanide-degrading activity at the initial CN concentration of 200 mg L?1, may be employed to effectively treat cyanide-rich wastewater, especially electroplating effluent.  相似文献   

4.
Upon cardiolipin (CL) liposomes binding, horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential, binds CO and NO with high affinity, displays peroxidase activity, and facilitates peroxynitrite isomerization. Here, the effect of CL liposomes on the nitrite reductase activity of ferrous cytc (cytc-Fe(II)) is reported. In the absence of CL liposomes, hexa-coordinated cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO (k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4 and 20.0 °C). However, CL liposomes facilitate the NO2 ?-mediated nitrosylation of cytc-Fe(II) in a dose-dependent manner inducing the penta-coordination of the heme-Fe(II) atom. The value of k on for the NO2 ?-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO is 2.6 ± 0.3 M?1 s?1 (at pH 7.4 and 20.0 °C). Values of the apparent dissociation equilibrium constant for CL liposomes binding to cytc-Fe(II) are (2.2 ± 0.2) × 10?6 M, (1.8 ± 0.2) × 10?6 M, and (1.4 ± 0.2) × 10?6 M at pH 6.5, 7.4, and 8.1, respectively, and 20.0 °C. These results suggest that the NO2 ?-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO could play anti-apoptotic effects impairing lipid peroxidation and therefore the initiation of the cell death program by the release of pro-apoptotic factors (including cytc) in the cytoplasm.  相似文献   

5.
The kinetics of the binding of cyanide to ferric chloroperoxidase have been studied at 25°C and ionic strength 0.11 M using a stopped-flow apparatus. The dissociation constant (KCN) of the peroxidase-cyanide complex and both forward (k+) and reverse (k?) rate constants are independent of the H+ concentration over the pH range 2.7 to 7.1. The values obtained are kcn = (9.5 ± 1.0) × 10-5 M, k+. = (5.2 ± 0.5) × 104 M?1 sec?1 and k- = (5.0± 1.4) sec-1. In the presence of 0 06 M potassium nitrate the affinity of cyanide for chloroperoxidase decreases due to the inhibition of the forward reaction. The dissociation rate is not affected. The nitrate anion exerts its influence by binding to a protonated form of the enzyme, whereas the cyanide binds to the unprotonated form. Binding of nitrate results in an apparent shift towards higher pKa values of the ionization of a crucial heme-linked acid group. Hence the influence of this group can be detected in the accessible pH range. Extrapolation to zero nitrate concentration yields a value of 3.1±0.3 for the pKa of the heme-linked acid group.  相似文献   

6.
The tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) gene polymorphisms have recently been reported to be associated with the susceptibility to several immune-related diseases. This study was performed to evaluate the potential association of TNFAIP3 polymorphisms with Behcet’s disease (BD) in a Chinese Han population. Five single-nucleotide polymorphisms (SNPs), rs10499194, rs610604, rs7753873, rs5029928, and rs9494885 of TNFAIP3 were genotyped in 722 BD patients and 1,415 healthy controls using a PCR-restriction fragment length polymorphism assay. Allele and genotype frequencies were compared between patients and controls using the χ 2 test. The results showed a significantly increased prevalence of the rs9494885 TC genotype and C allele in BD patients compared with controls (Bonferroni corrected p (p c) = 1.83 × 10?10, odds ratio (OR) [95 % CI] 2.03 [1.65–2.49]; p c = 8.35 × 10?10, OR [95 % CI] 1.81 [1.51–2.18], respectively).The frequency of the TT genotype and T allele of rs9494885 was markedly lower in BD patients than that in controls (p c = 1.23 × 10?10, OR [95 % CI] 0.50 [0.40–0.61]; p c = 8.35 × 10?10, OR [95 % CI] 0.55 [0.46–0.66], respectively). For rs10499194, a higher frequency of the CC genotype (p c = 0.015, OR [95 % CI] 1.96 [1.30–2.97]) and C allele (p c = 0.005, OR [95 % CI] 1.92 [1.28–2.90]), and a lower frequency of the TC genotype (p c = 0.015, OR [95 % CI] 0.51 [0.34–0.77]) and T allele (p c = 0.005, OR [95 % CI] 0.52 [0.35–2.97]) were found in BD patients. Concerning rs7753873, a higher frequency of the AC genotype (p c = 0.015, OR [95 % CI] 1.49 [1.17–1.91]) and C allele (p c = 0.025, OR [95 % CI] 1.39 [1.11–1.76]), and a lower frequency of the AA genotype (p c = 0.03, OR [95 % CI] 0.68 [0.53–0.87]) and A allele (p c = 0.025, OR [95 % CI] 0.72 [0.57–0.91]) were observed in BD patients. This study identified one strong risk SNP rs9494885 and two weak risk SNPs rs10499194 and rs7753873 of TNFAIP3 in Chinese Han BD patients.  相似文献   

7.
Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4], whereas the value of k on for NO2 ? reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M?1 s?1 (at pH 7.4). CL facilitates the NO2 ?-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 ?-mediated conversion of CL–CM-cytc-Fe(II) to CL–CM-cytc-Fe(II)-NO (5.6 ± 0.6 M?1 s?1; at pH 7.4) being slightly higher than that for the NO2 ?-mediated conversion of CL–cytc-Fe(II) to CL–cytc-Fe(II)-NO (2.6 ± 0.3 M?1 s?1; at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10?6 M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are ?1.05 ± 0.07 and ?1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH?. These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL–CM-cytc.  相似文献   

8.
Cytochrome c is a highly conserved protein, with 20 residues identical in all eukaryotic cytochromes c. Gly-41 is one of these invariant residues, and is the position of the only reported naturally occurring mutation in cytochrome c (human G41S). The basis, if any, for the conservation of Gly-41 is unknown. The mutation of Gly-41 to Ser enhances the apoptotic activity of cytochrome c without altering its role in mitochondrial electron transport. Here we have studied additional residue 41 variants and determined their effects on cytochrome c functions and conformation. A G41T mutation decreased the ability of cytochrome c to induce caspase activation and decreased the redox potential, whereas a G41A mutation had no impact on caspase induction but the redox potential increased. All residue 41 variants decreased the pK a of a structural transition of oxidized cytochrome c to the alkaline conformation, and this correlated with a destabilization of the interaction of Met-80 with the heme iron(III) at physiological pH. In reduced cytochrome c the G41T and G41S mutations had distinct effects on a network of hydrogen bonds involving Met-80, and in G41T the conformational mobility of two Ω-loops was altered. These results suggest the impact of residue 41 on the conformation of cytochrome c influences its ability to act in both of its physiological roles, electron transport and caspase activation.  相似文献   

9.
Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO2 ?) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase binuclear heme a 3/CuB active site is one entity known to be responsible for conversion of cellular nitrite to nitric oxide. We recently reported that a partially reduced heme/copper assembly reduces nitrite ion, producing nitric oxide; the heme serves as the reductant and the cupric ion provides a Lewis acid interaction with nitrite, facilitating nitrite (N–O) bond cleavage (Hematian et al., J. Am. Chem. Soc. 134:18912–18915, 2012). To further investigate this nitrite reductase chemistry, copper(II)–nitrito complexes with tridentate and tetradentate ligands were used in this study, where either O,O′-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate–iron(II) complexes, one with electron-donating para-methoxy peripheral substituents and the other with electron-withdrawing 2,6-difluorophenyl substituents, were used. The results show that differing modes of nitrite coordination to the copper(II) ion lead to differing kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to convert nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. On the basis of our observations, reaction mechanisms are proposed and discussed in terms of heme/copper heterobinuclear structures.  相似文献   

10.
This study aimed to investigate the predisposition of common pre-miRNA SNPs with Behcet’s disease (BD), Vogt–Koyanagi–Harada (VKH) syndrome and acute anterior uveitis (AAU) associated with ankylosing spondylitis (AS). A two-stage association study was carried out in 859 BD, 400 VKH syndrome, 209 AAU+AS+ patients and 1,685 controls all belonging to a Chinese Han population. Genotyping, the expression of miR-196a and Bach1 (the target gene of miR-196a), cell proliferation, cytokine production were examined by PCR–RFLP, real-time PCR, CCK8 and ELISA. In the first stage study, the results showed significantly increased frequencies of the miR-196a2/rs11614913 TT genotype and T allele in BD patients (adjusted P c = 0.024, OR = 1.63; adjusted P c = 5.4 × 10?3, OR = 1.45, respectively). However, no significant association of the tested SNPs with VKH and AAU+AS+ patients was observed. The second stage and combined studies confirmed the association of rs11614913 with BD (TT genotype: adjusted P c = 6×10?5, OR = 1.53; T allele: adjusted P c = 8×10?6, OR = 1.35; CC genotype: adjusted P c = 0.024, OR = 0.68). A stratified analysis showed an association of the rs11614913 TT genotype and T allele with the arthritis subgroup of BD (P c = 5.3 × 10?3, OR = 1.89; P c = 0.015, OR = 1.56, respectively). Functional experiments showed a decreased miR-196a expression, an increased Bach1 expression and an increased production of IL-1β and MCP-1 in TT cases compared to CC cases (P = 0.023, P = 0.0073, P = 0.012, P = 0.002, respectively). This study shows that a functional variant of miR-196a2 confers risk for BD but not for VKH syndrome or AAU+AS+ by modulating the miR-196a gene expression and by regulating pro-inflammatory IL-1β and MCP-1 production.  相似文献   

11.
Cytochrome c555 from hyperthermophilic bacteria Aquifex aeolicus (AA cyt c555) is a hyperstable protein belonging to the cyt c protein family, which possesses a unique long 310‐α‐310 helix containing the heme‐ligating Met61. Herein, we show that AA cyt c555 forms dimers by swapping the region containing the extra 310‐α‐310 helix and C‐terminal α‐helix. The asymmetric unit of the crystal of dimeric AA cyt c555 contained two dimer structures, where the structure of the hinge region (Val53–Lys57) was different among all four protomers. Dimeric AA cyt c555 dissociated to monomers at 92 ± 1°C according to DSC measurements, showing that the dimer was thermostable. According to CD measurements, the secondary structures of dimeric AA cyt c555 were maintained at pH 2.2–11.0. CN and CO bound to dimeric AA cyt c555 in the ferric and ferrous states, respectively, owing to the flexibility of the hinge region close to Met61 in the dimer, whereas these ligands did not bind to the monomer under the same conditions. In addition, CN and CO bound to the oxidized and reduced dimer at neutral pH and a wide range of pH (pH 2.2–11.0), respectively, in a wide range of temperature (25–85°C), owing to the thermostability and pH tolerance of the dimer. These results show that the ligand binding character of hyperstable AA cyt c555 changes upon dimerization by domain swapping.  相似文献   

12.
Light scattering and viscometric studies have been carried out on two preparations, A and B, of rooster comb hyaluronate. Sedimentation rate studies have also been performed with A. Light scattering measurements in 0.2 m KCl for preparation A gave a molecular weight of 3.3 × 106 and for B, 1.0 × 106. In (0.1–0.3) M NaCl similar measurements gave a particle weight for A of (4.4–6.4 × 106 and for B (1.7–2.8 × 106. In 0.066 m CaCl2 molecular weight values of 9.5 × 106 for A and 1.7 × 106 for B were obtained. Thus in the presence of Na+ and Ca2+ ions aggregates of chains persisted into dilute solution. Measurements by light scattering on A and B in 4 m guanidinium chloride gave values in the same range as those obtained in 0.2 m KCl. Sedimentation rate studies on A gave values of 10.3 Svedbergs in 0.2 m KCl and 12.2 Svedbergs in 0.2 m NaCl and 0.066m CaCl2. The shear dependence of the viscosity was studied using a conicylindrical viscometer at shear rates between 0.5 and 20 s?1. Preparation A in 0.2 m KCl and NaCl yielded values for (νsp/cc→0 of 5000 and 7100 ml g?1 respectively in keeping with the tendency to aggregate. The behaviour for preparation B was similar. In 0.066 m CaCl2 there was a marked dependence of viscosity on shear speed below 10 s?1 for all concentrations and the value of (νsp/c)→0 at 0 s?1 for preparation A was 7700 ml g?1 while at a shear rate of 8 s?1 (νsp/c)c→0 ? 5000 ml g ?1. Similar effects were found for preparation B and the data suggest associations of chains disruptable by weak shear forces. The increase in viscosity with concentration in the presence of 0.066 m CaCl2 was much less than in the presence of KCl or NaCl, suggesting that the Ca2+ had a marked effect on the ”rigidity’ of the molecules in solution. A viscometric titration experiment with Ca2? showed that a level of 0.02 m CaCl2 in 0.2 m NaCl was sufficient to produce the change in viscosity presented above and that significant perturbations of the viscosity were present at 0.005?0.01 m CaCl2.  相似文献   

13.
[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN?) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 ? complex with the net spin on Fed whereas Hox-CO shows an apical CN? at Fed in a [4Fe4S-2Fe(CO)]3 ? complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 ? complex with an apical superoxide (O2?) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 ? complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2 protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.  相似文献   

14.
The electron transfer reactions of horse heart cytochrome c with a series of amino acid-pentacyanoferrate(II) complexes have been studied by the stopped-flow technique, at 25°C, μ = 0.100, pH 7 (phosphate buffer). A second-order behavior was observed in the case of the Fe(CN)5 (histidine)3? complex, with k = 2.8 x 105 M?1 sec?1. For the Fe(CN)5 (alanine)4? and Fe(CN)5(L-glutamate)5? complexes, only a minor deviation of the second-order behavior, close to the experimental error (k = 3.2 × 105 and 1.6 x 105 M?1 sec?1, respectively) was noted at high concentrations of the reactants (e.g., 6 × 10?4 M). The results are in accord with recent work on the Fe(CN)64?/cytochrome c system demonstrating weak association of the reactants. The calculated self-exchange rate constants including electrostatic interactions for the imidazole,L -histidine, 4-aminopyridine, glycinate, β-alaninate, andL-glutamate pentacyanoferrate(II) complexes were 3.3 × 105, 3.3 × 105, 2.8 × 106,4.1 × 102,5.5 × 102, and 6.0 M?1 sec?1, respectively. Marcus theory calculations for the cytochrome c reactions were interpreted in terms of two nonequivalent binding sites for the complexes, with the metalloprotein self-exchange rate constants varying from 104 M?1 sec?1 (histidine, imidazole, and 4-aminopyridine complexes) to 106 M?1 sec ?1 (glycinate, β-alaninate, and L-glutamate complexes).  相似文献   

15.
The kinetics of CNProto- and CNDeutero-hemin binding to apohemoglobin A2 was investigated in a stopped-flow device in 0.05 M potassium phosphate buffer, pH 7, at 10°C. The overall kinetic profile exhibited multiple phases: Phases I–IV corresponding with heme insertion (8.5?13 × 107 M?1 s?1), local structural rearrangement (0.21?0.23 s?1), global αδ structural event (0.071?0.098 s?1), and formation of the Fe–His bond (0.009?0.012 s?1), respectively. Kinetic differences observed between apohemoglobin A2 and apohemoglobin A (previously studied) prompted an analysis of the structures of β and δ chains through molecular modeling. This revealed a structural repositioning of the residues not only at, but also distant from the site of the amino acid substitutions, specifically those involved in the heme contact and subunit interface. A significant global change was observed in the structure of the exon-coded 3 region and provided additional evidence for the designation of this as the subunit assembly domain.  相似文献   

16.
CYP199A2 from Rhodopseudomonas palustris CGA009 is a heme monooxygenase that catalyzes the oxidation of para-substituted benzoic acids. CYP199A2 activity is reconstituted by a class I electron transfer chain consisting of the associated [2Fe–2S] ferredoxin palustrisredoxin (Pux) and a flavoprotein palustrisredoxin reductase (PuR). Another [2Fe–2S] ferredoxin, palustrisredoxin B (PuxB; RPA3956) has been identified in the genome. PuxB shares sequence identity and motifs with vertebrate-type ferredoxins involved in Fe–S cluster assembly but also 50% identity with Pux and it mediates electron transfer from PuR to CYP199A2, albeit with lower steady-state turnover activity: 99 nmol (nmol P450)?1min?1 for 4-methoxybenzoic acid oxidation compared with 1,438 nmol (nmol P450)?1 min?1 for Pux. This difference mainly arises from weak CYP199A2–PuxB binding (K m 34.3 vs. 0.45 μM for Pux) rather than slow electron transfer (k cat 19.1 vs. 37.9 s?1 for Pux). Comparison of the 2.0-Å-resolution crystal structure of the PuxB A105R mutant with other vertebrate-type, P450-associated ferredoxins revealed similar protein folds but also significant differences in some loop regions. Therefore, PuxB offers a platform for studying ferredoxin–P450 recognition in class I P450 systems. Substitution of PuxB residues at key locations with those in Pux shows that Ala42, Cys43, and Ala44 in the [2Fe–2S] cluster binding loop and Met66 are important in electron transfer from PuxB to CYP199A2, whereas Phe73 and the C-terminal Ala105 were involved in both protein binding and electron transfer.  相似文献   

17.
The interaction of acrylonitrile (VCN) with rat blood has been investigated at the molecular level in an attempt to understand the possible mechanism of its toxicity. The results obtained were compared to those with potassium cyanide (KCN), a compound known to liberate cyanide (CN?) in biologic conditions. The radioactivity derived from K14CN was eliminated faster than that from [1-14C]VCN. Up to a maximum of 94% of 14C from VCN in erythrocytes was detected covalently bound to cytoplasmic and membrane proteins, whereas 90% of the radioactivity from KCN in erythrocytes was found in the heme fraction of hemoglobin. Determination of specific activity showed that binding occurred more in vivo than in vitro which indicated that the VCN molecule was bioactivated inside erythrocytes. These results indicate that KCN interacts mainly through CN? liberation and binding to heme, whereas VCN, which binds to cytoplasmic and membrane proteins, may cause damage to red cells by mechanisms other than release of CN?.  相似文献   

18.
Addition of KCN to Helix pomatia β-hemocyanin fully saturated with either O2 or CO results in a decrease of the spectroscopic properties of the protein (absorbance at 340 nm and luminescence at 550 nm) due to the displacement of the gaseous ligands (O2 or CO) from the active site. The anionic form of cyanide (CN?) is supposed to bind to the active site; its intrinsic affinity for the protein, as calculated from independent O2 and CO displacement experiments, is between 2 and 6 × 106M?1. The replacement of O2 or CO shows some differences which may be correlated with the different modes of binding at the active site. Thus, while displacement of oxygen by cyanide is hyperbolic, addition of cyanide to carbonylated hemocyanin shows a lag phase. This finding suggests the formation of a mixed liganded complex at the active site. The simultaneous presence of CO and CN? at the active site of hemocyanin is also supported by the experiment in which addition of small amounts of KCN to hemocyanin partially saturated with O2 and CO gives rise to an increase of emission intensity and a concomitant decrease of the O2 absorption band. The mixed-liganded species displays luminescence properties similar to those of CO-saturated hemocyanin, and the formation of the complex is reversible on dialysis or oxygenation.  相似文献   

19.
In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K a and K b. Typical values for these parameters were used, i. e., K a = 3.68 × 10?5–1.83 × 10?4 and K b = 1.83 × 10?7–2.30 × 10?7 s?1. The analysis consisted of performing simulations of system behavior under different operating conditions, including variations in the number of chambers used and the utilization of fixed or scaled velocity gradients in the units. The response variable analyzed in all simulations was the total retention time necessary to achieve a given flocculation efficiency, which was determined by means of conventional solution methods of nonlinear algebraic equations, corresponding to the material balances on the system. Values for the number of chambers ranging from 1 to 5, velocity gradients of 20–60 s?1 and flocculation efficiencies of 50–90 % were adopted.  相似文献   

20.
Association of a sulfated galactosyl ceramide, sulfatide, with the viral envelope glycoprotein hemagglutinin (HA) delivered to the cell surface is required for influenza A virus (IAV) replication through efficient translocation of the newly synthesized viral nucleoprotein from the nucleus to the cytoplasm. To determine whether the ectodomain of HA can bind to sulfatide, a secreted-type HA (sHA), in which the transmembrane region and cytoplasmic tail were deleted, was generated by using a baculovirus expression system. The receptor binding ability and antigenic structure of sHA were evaluated by a hemagglutination assay, solid-phase binding assay and hemagglutination inhibition assay. sHA showed subtype-specific antigenicity and binding ability to both sulfatide and gangliosides. Kinetics of sHA binding to sulfatide and GD1a was demonstrated by quartz crystal microbalance (QCM) analysis. QCM analysis showed that the sHA bound with the association rate constant (k on) of 1.41?×?104 M?1 sec?1, dissociation rate constant (k off) of 2.03?×?10?4 sec?1 and K d of 1.44?×?10?8 M to sulfatide immobilized on a sensor chip. The k off values of sHA were similar for sulfatide and GD1a, whereas the k on value of sHA binding to sulfatide was 2.56-times lower than that of sHA binding to GD1a. The results indicate that sulfatide directly binds to the ectodomain of HA with high affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号