首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
West Nile virus is an arthropod-borne zoonosis transmitted by a large number of mosquito species, and birds play a key role as reservoir of the virus. Its distribution is largely widespread over Africa, Asia, the Americas and Europe. Since 1978, it has frequently been reported in Madagascar. Studies described a high seroprevalence level of the virus in humans in different areas of the island and a human fatal case of WNV infection was reported in 2011. Despite these reports, the epidemiology of WNV in Madagascar, in particular, viral circulation remains unclear. To explore the transmission of WNV in two rural human populations of Madagascar, we investigated local mosquitoes and poultry for evidence of current infections, and determined seroprevalence of candidate sentinel species among the local poultry. These 2 areas are close to lakes where domestic birds, migratory wild birds and humans coexist. Serological analysis revealed WNV antibodies in domestic birds (duck, chicken, goose, turkey and guinea fowl) sampled in both districts (Antsalova 29.4% and Mitsinjo 16.7%). West Nile virus nucleic acid was detected in one chicken and in 8 pools of mosquitoes including 2 mosquito species (Aedeomyia madagascarica and Anopheles pauliani) that have not been previously described as candidate vectors for WNV. Molecular analysis of WNV isolates showed that all viruses detected were part of the lineage 2 that is mainly distributed in Africa, and were most closely matched by the previous Malagasy strains isolated in 1988. Our study showed that WNV circulates in Madagascar amongst domestic birds and mosquitoes, and highlights the utility of poultry as a surveillance tool to detect WNV transmission in a peri-domestic setting.  相似文献   

4.
West Nile virus (WNV), a mosquito-borne flavivirus with significant impact on human and animal health, has recently demonstrated an expanded zone of activity globally. The aim of this study is to investigate the frequency and distribution of WNV infections in potential vectors and several mammal and avian species in Turkey, where previous data indicate viral circulation. The study was conducted in 15 provinces across Turkey during 2011–2013. In addition, the entomological study was extended to 4 districts of the Turkish Republic of Northern Cyprus. WNV exposure was determined in humans, horses, sheep and ducks from Mersin, Sanliurfa, Van and Kars provinces of Turkey, via the detection of neutralizing antibodies. WNV RNA was sought in human and equine samples from Mersin, Adana and Mugla provinces. Field-collected mosquitoes from 92 sites at 46 locations were characterized morphologically and evaluated for viral RNA. Neutralizing antibodies were identified in 10.5% of the 1180 samples studied and detected in all species evaluated. Viral nucleic acids were observed in 5.9% of 522 samples but only in horses. A total of 2642 mosquito specimens belonging to 15 species were captured, where Ochlerotatus caspius (52.4%), Culex pipiens sensu lato (24.2%) comprise the most frequent species. WNV RNA was detected in 4 mosquito pools (1.9%), that comprise Oc. caspius Cx. pipiens s.l. and DNA barcoding revealed the presence of Cx. quinquefasciatus and Cx. perexiguus mosquitoes in infected Culex pools. All WNV partial sequences were characterized as lineage 1 clade 1a. These findings indicate a widespread WNV activity in Turkey, in Eastern Thrace and Mediterranean-Aegean regions as well as Southeastern and Northeastern Anatolia.  相似文献   

5.
West Nile virus (WNV) is now endemic in California, with annual transmission documented by the statewide surveillance system. Although much is known about the horizontal avian‐mosquito transmission cycle, less is known about vertical transmission under field conditions, which may supplement virus amplification during summer and provide a mechanism to infect overwintering female mosquitoes during fall. The current study identified clusters of WNV‐infected mosquitoes in Sacramento and Yolo Counties, CA, during late summer 2011 and tested field‐captured ovipositing female mosquitoes and their progeny for WNV RNA to estimate the frequency of vertical transmission. Space‐time clustering of WNV‐positive Culex pipiens complex pools was detected in the northern Elk Grove area of Sacramento County between July 18 and September 18, 2011 (5.22 km radius; p<0.001 and RR=7.80). Vertical transmission by WNV‐infected females to egg rafts was 50% and to larvae was 40%. The estimated minimal filial infection rate from WNV‐positive, ovipositing females was 2.0 infected females/1,000. The potential contribution of vertical transmission to WNV maintenance and amplification are discussed.  相似文献   

6.
Utility of early‐season mosquito surveillance to predict West Nile virus activity in late summer was assessed in Suffolk County, NY. Dry ice‐baited CDC miniature light traps paired with gravid traps were set weekly. Maximum‐likelihood estimates of WNV positivity, minimum infection rates, and % positive pools were generally well correlated. However, positivity in gravid traps was not correlated with positivity in CDC light traps. The best early‐season predictors of WNV activity in late summer (estimated using maximum‐likelihood estimates of Culex positivity in August and September) were early date of first positive pool, low numbers of mosquitoes in July, and low numbers of mosquito species in July. These results suggest that early‐season entomological samples can be used to predict WNV activity later in the summer, when most human cases are acquired. Additional research is needed to establish which surveillance variables are most predictive and to characterize the reliability of the predictions.  相似文献   

7.
8.
A knowledge, attitudes, and practices (KAP) questionnaire combined with entomological surveys of residential mosquito-breeding sites were conducted in two Upstate New York neighborhoods. We tested the hypothesis that “correct” West Nile virus (WNV) knowledge and perceptions correspond with the use of practices that prevent mosquitoes from breeding and biting. Our results demonstrate that perceptions of WNV relate to the number of positive containers in yards and the use of mosquito preventive measures. In contrast, WNV knowledge was not related. Culex pipiens and Cx. restuans were common species found breeding in containers. Aedes japonicus was the most abundant species in 77% of positive containers (buckets, flower pots, and birdbaths). This new, invasive mosquito together with the Culex species identified in this study represent significant potential as vectors of WNV and other arboviruses affecting human and animal health. We conclude that more training and education programs should focus on WNV control strategies and recognizing mosquito breeding in residential yards. This is the first study to directly investigate the relationship between KAP and breeding of WNV vectors in residential yards.  相似文献   

9.
Emerging and endemic mosquito-borne viruses can be difficult to detect and monitor because they often cause asymptomatic infections in human or vertebrate animals or cause nonspecific febrile illness with a short recovery waiting period. Some of these pathogens circulate into complex cryptic cycles involving several animal species as reservoir or amplifying hosts. Detection of cases in vertebrate hosts can be complemented by entomological surveillance, but this method is not adapted to low infection rates in mosquito populations that typically occur in low or nonendemic areas. We identified West Nile virus circulation in Camargue, a wetland area in South of France, using a cost-effective xenomonitoring method based on the molecular detection of virus in excreta from trapped mosquitoes. We also succeeded at identifying the mosquito species community on several sampling sites, together with the vertebrate hosts on which they fed prior to being captured using amplicon-based metabarcoding on mosquito excreta without processing any mosquitoes. Mosquito excreta-based virus surveillance can complement standard surveillance methods because it is cost-effective and does not require personnel with a strong background in entomology. This strategy can also be used to noninvasively explore the ecological network underlying arbovirus circulation.  相似文献   

10.
Dispersal is a critical life history behavior for mosquitoes and is important for the spread of mosquito-borne disease. We implemented the first stable isotope mark-capture study to measure mosquito dispersal, focusing on Culex pipiens in southwest suburban Chicago, Illinois, a hotspot of West Nile virus (WNV) transmission. We enriched nine catch basins in 2010 and 2011 with 15N-potassium nitrate and detected dispersal of enriched adult females emerging from these catch basins using CDC light and gravid traps to distances as far as 3 km. We detected 12 isotopically enriched pools of mosquitoes out of 2,442 tested during the two years and calculated a mean dispersal distance of 1.15 km and maximum flight range of 2.48 km. According to a logistic distribution function, 90% of the female Culex mosquitoes stayed within 3 km of their larval habitat, which corresponds with the distance-limited genetic variation of WNV observed in this study region. This study provides new insights on the dispersal of the most important vector of WNV in the eastern United States and demonstrates the utility of stable isotope enrichment for studying the biology of mosquitoes in other disease systems.  相似文献   

11.
In the late summer of 1998, an outbreak of equine encephalomyelitis due to West Nile virus (WNV) occurred in the Tuscany region of central Italy. The disease was detected in 14 race horses from nine localities in four Provinces: Firenze, Lucca, Pisa and Pistoia. The outbreak area included Fucecchio wetlands (1800 ha), the largest inland marsh in Italy, and the adjacent hilly Cerbaie woodlands with farms breeding horses. To detect potential vectors of WNV, entomological surveys of Fucecchio and Cerbaie were undertaken during 1999-2002 by collecting mosquito larvae from breeding sites and adult mosquitoes by several methods of sampling. Among 6023 mosquitoes (Diptera: Culicidae) collected, 11 species were identified: Aedes albopictus (Skuse), Ae. vexans (Meigen), Anopheles atroparvus Van Thiel, An. maculipennis Meigen s.s., An. plumbeus Stephens, Culex impudicus Ficalbi, Cx. pipiens L., Culiseta longiareolata Macquart), Ochlerotatus caspius (Pallas), Oc. detritus (Haliday) and Oc. geniculatus (Olivier). In Fucecchio marshes, Cx. impudicus predominated with seasonal peak densities in spring and autumn: its greatest abundance during early spring coincides with arrival of migratory birds from Africa. In Cerbaie hills, Cx. pipiens predominated with peak population density in late summer. No viruses were isolated from 665 mosquitoes processed. These findings, plus other data on Italian mosquito bionomics, suggest a possible mode of WNV transmission involving the most abundant Culex in the Fucecchio-Cerbaie areas. Culex impudicus, being partly ornithophilic, might transmit WNV from migratory to non-migratory birds during springtime; Cx. pipiens, having a broader host range, would be more likely to transmit WNV from birds to horses and, perhaps, to humans by late summer.  相似文献   

12.

Background

West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic.

Methodology/Principal Findings

We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase.

Conclusions/Significance

Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe.  相似文献   

13.
14.
West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host–vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of ‘dilution effect’) best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.  相似文献   

15.
The emerging disease West Nile fever is caused by West Nile virus (WNV), one of the most widespread arboviruses. This study represents the first test of the vectorial competence of European Culex pipiens Linnaeus 1758 and Stegomyia albopicta (= Aedes albopictus) (both: Diptera: Culicidae) populations for lineage 1 and 2 WNV isolated in Europe. Culex pipiens and S. albopicta populations were susceptible to WNV infection, had disseminated infection, and were capable of transmitting both WNV lineages. This is the first WNV competence assay to maintain mosquito specimens under environmental conditions mimicking the field (day/night) conditions associated with the period of maximum expected WNV activity. The importance of environmental conditions is discussed and the issue of how previous experiments conducted in fixed high temperatures may have overestimated WNV vector competence results with respect to natural environmental conditions is analysed. The information presented should be useful to policymakers and public health authorities for establishing effective WNV surveillance and vector control programmes. This would improve preparedness to prevent future outbreaks.  相似文献   

16.
17.
In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence of WNV outbreaks in northern Europe. The aim of the present study was to directly compare vector competence of northern and southern European Culex pipiens (Cx. p.) pipiens mosquitoes for WNV across a gradient of temperatures. WNV infection and transmission rates were determined for two Cx. p. pipiens populations originating from The Netherlands and Italy, respectively. Mosquitoes were orally exposed by providing an infectious bloodmeal, or by injecting WNV (lineage 2) in the thorax, followed by 14‐day incubation at 18, 23, or 28 °C. No differences in infection or transmission rates were found between the Cx. p. pipiens populations with both infection methods, but WNV transmission rates were significantly higher at temperatures above 18 °C. The absence of WNV outbreaks in northern Europe cannot be explained by differences in vector competence between Cx. p. pipiens populations originating from northern and southern Europe. This study suggests that low temperature is a key limiting factor for WNV transmission.  相似文献   

18.
Assessment of arbovirus vector infection rates using variable size pooling   总被引:2,自引:0,他引:2  
Pool testing of vector samples for arboviruses is widely used in surveillance programmes. The proportion of infected mosquitoes (Diptera: Culicidae) is often estimated from the minimum infection rate (MIR), based on the assumption of only one infected mosquito per positive pool. This assumption becomes problematic when pool size is large and/or infection rate is high. By relaxing this constraint, maximum likelihood estimation (MLE) is more useful for a wide range of infection levels that may be encountered in the field. We demonstrate the difference between these two estimation approaches using West Nile virus (WNV) surveillance data from vectors collected by gravid traps in Chicago during 2002. MLE of infection rates of Culex mosquitoes was as high as 60 per 1000 at the peak of transmission in August, whereas MIR was less than 30 per 1000. More importantly, we demonstrate roles of various pooling strategies for better estimation of infection rates based on simulation studies with hypothetical mosquito samples of 18 pools. Variable size pooling (with a serial pool sizes of 5, 10, 20, 30, 40 and 50 individuals) performed consistently better than a constant size pooling of 50 individuals. We conclude that variable pool size coupled with MLE is critical for accurate estimates of mosquito infection rates in WNV epidemic seasons.  相似文献   

19.
Rabensburg virus (RABV), a Flavivirus with ~76% nucleotide and 90% amino acid identity with representative members of lineage one and two West Nile virus (WNV), previously was isolated from Culex pipiens and Aedes rossicus mosquitoes in the Czech Republic, and phylogenetic and serologic analyses demonstrated that it was likely a new lineage of WNV. However, no direct link between RABV and human disease has been definitively established and the extent to which RABV utilizes the typical WNV transmission cycle is unknown. Herein, we evaluated vector competence and capacity for vertical transmission (VT) in Cx. pipiens; in vitro growth on avian, mammalian, and mosquito cells; and infectivity and viremia production in birds. RABV infection and replication only were detected on mosquito cells. Experimentally inoculated birds did not become infected. Cx. pipiens had poor peroral vector competence and a higher VT rate as compared to US-WNV in Cx. pipiens. As a result, we postulate that RABV is an intermediate between the mosquito-specific and horizontally transmitted flaviviruses.  相似文献   

20.
West Nile virus (WNV) could be introduced into Germany via migratory birds originating from Africa or southern Europe and subsequently transmitted to indigenous birds, humans, or horses by mosquitoes. Neither the virus itself nor antibodies against WNV have yet to be found in mosquitoes and horses, whereas antibodies have been detected in migrating birds and in humans that were in close contact with birds. At present, the West Nile virus itself has yet to be detected in Germany. This investigation was conducted primarily in major bird breeding, resting, and roosting habitats (hotspots) in the Upper Rhine Valley. Adult mosquitoes were trapped using CO2‐baited Encephalitis Vector Surveillance (EVS)‐traps and were tested for WNV by the VecTest WNV Antigen Assay. In 2007 and 2008, a total of 11,073 host‐seeking adult female mosquitoes (13 species) were tested, and all tests were negative for WNV. Statistical calculations could be performed only where sufficient numbers of mosquitoes were trapped. For these sites, WNV infection among mosquitoes could be ruled out with 80% certainty. For the evaluation of the WNV situation in Germany, the results of this investigation are a further indication that the virus has not yet arrived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号