首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Solid-phase extraction (SPE) procedures for pesticide residues in food and environment are reviewed and discussed. The use of these procedures, which include several approaches such as: matrix solid-phase dispersion (MSPD), solid-phase micro-extraction (SPME) and stir-bar sorptive extraction (SBSE), represents an opportunity to reduce analysis time, solvent consumption, and overall cost. SPE techniques differ from solvent extraction depending on the interactions between a sorbent and the pesticide. This interaction may be specific for a particular pesticide, as in the interaction with an immunosorbent, or non-specific, as in the way a number of different pesticides are adsorbed on apolar or polar materials. A variety of applications were classified according to the method applied: conventional SPE, SPME, hollow-fiber micro-extraction (HFME), MSPD and SBSE. Emphasis is placed on the multiresidue analysis of liquid and solid samples.  相似文献   

2.
Analytical aspects concerning the heterocyclic aromatic amines (HAAs) determination in foods are reviewed. Sample pre-treatment procedures such as liquid-liquid extraction (LLE), supercritical fluid extraction, solid-phase extraction (SPE), solid-phase microextraction (SPME), and the mainly used LLE-SPE tandem extraction are discussed. The analytical methods used for the identification and quantification are HPLC, HPLC combined with single or tandem MS detection (HPLC-MS, HPLC-MS/MS), GC-MS and capillary electrophoresis. Advantages and figures of merit for each technique are discussed.  相似文献   

3.
This paper discusses preparation techniques of samples of plant material for chromatographic analysis. Individual steps of the procedures used in sample preparation, including sample collection from the environment or from tissue cultures, drying, comminution, homogenization, leaching, extraction, distillation and condensation, analyte enrichment, and obtaining the final extracts for chromatographic analysis are discussed. The techniques most often used for isolation of analytes from homogenized plant material, i.e., Soxhlet extraction, ultrasonic solvent extraction (sonication), accelerated solvent extraction, microwave-assisted extraction, supercritical-fluid extraction, steam distillation, as well as membrane processes are emphasized. Sorptive methods of sample enrichment and removal of interferences, i.e., solid-phase extraction, and solid-phase micro-extraction are also discussed.  相似文献   

4.
This paper discusses preparation techniques of samples of plant material for chromatographic analysis. Individual steps of the procedures used in sample preparation, including sample collection from the environment or from tissue cultures, drying, comminution, homogenization, leaching, extraction, distillation and condensation, analyte enrichment, and obtaining the final extracts for chromatographic analysis are discussed. The techniques most often used for isolation of analytes from homogenized plant material, i.e., Soxhlet extraction, ultrasonic solvent extraction (sonication), accelerated solvent extraction, microwave-assisted extraction, supercritical-fluid extraction, steam distillation, as well as membrane processes are emphasized. Sorptive methods of sample enrichment and removal of interferences, i.e., solid-phase extraction, and solid-phase micro-extraction are also discussed.  相似文献   

5.
6.
7.
The analysis of drugs in various biological fluids is an important criterion for the determination of the physiological performance of a drug. After sampling of the biological fluid, the next step in the analytical process is sample preparation. The complexity of biological fluids adds to the challenge of direct determination of the drug by chromatographic analysis, therefore demanding a sample preparation step that is often time-consuming, tedious, and frequently overlooked. However, direct on-line injection methods offer the advantage of reducing sample preparation steps and enabling effective pre-concentration and clean-up of biological fluids. These procedures can be automated and therefore reduce the requirements for handling potentially infectious biomaterial, improve reproducibility, and minimize sample manipulations and potential contamination.The objective of this review is to present an overview of the existing literature with emphasis on advances in automated sample preparation methods for liquid-chromatographic methods. More specifically, this review concentrates on the use of direct injection techniques, such as restricted-access materials, turbulent-flow chromatography and other automated on-line solid-phase extraction (SPE) procedures. It also includes short overviews of emerging automated extraction-phase technologies, such as molecularly imprinted polymers, in-tube solid-phase micro-extraction, and micro-extraction in a packed syringe for a more selective extraction of analytes from complex samples, providing further improvements in the analysis of biological materials. Lastly, the outlook for these methods and potential new applications for these technologies are briefly discussed.  相似文献   

8.
The analysis of drugs in various biological fluids is an important criterion for the determination of the physiological performance of a drug. After sampling of the biological fluid, the next step in the analytical process is sample preparation. The complexity of biological fluids adds to the challenge of direct determination of the drug by chromatographic analysis, therefore demanding a sample preparation step that is often time-consuming, tedious, and frequently overlooked. However, direct on-line injection methods offer the advantage of reducing sample preparation steps and enabling effective pre-concentration and clean-up of biological fluids. These procedures can be automated and therefore reduce the requirements for handling potentially infectious biomaterial, improve reproducibility, and minimize sample manipulations and potential contamination. The objective of this review is to present an overview of the existing literature with emphasis on advances in automated sample preparation methods for liquid-chromatographic methods. More specifically, this review concentrates on the use of direct injection techniques, such as restricted-access materials, turbulent-flow chromatography and other automated on-line solid-phase extraction (SPE) procedures. It also includes short overviews of emerging automated extraction-phase technologies, such as molecularly imprinted polymers, in-tube solid-phase micro-extraction, and micro-extraction in a packed syringe for a more selective extraction of analytes from complex samples, providing further improvements in the analysis of biological materials. Lastly, the outlook for these methods and potential new applications for these technologies are briefly discussed.  相似文献   

9.
Terpenes emitted by conifer trees are generally determined by analysing plant extracts or essential oils, prepared from foliage and cones using steam distillation. The application of these procedures limits experiments to cut plant materials. Recently headspace techniques have been adopted to examine terpene emission by living plants. This paper deals with the application of solid-phase micro-extraction (SPME) for the analysis of terpenes emitted by conifers foliage of Engelmann spruce (Picea engelmannii), including its seedlings. The compositions of SPME extracts obtained for destroyed and non-destroyed old and juvenile spruce needles were compared with the compositions of essential oils and pressurised liquid extraction (PLE) extracts corresponding to the same plant materials. No substantial differences have been found in the qualitative terpene composition estimated by analysing essential oil and PLE and SPME extracts from non-destroyed old and juvenile foliage. The disintegration of spruce needles results in the formation of a significant amount of myrcene in the case of the old conifer foliage and non-terpenoic compounds in the case of juvenile conifer foliage. This phenomenon can be attributed to enzymatic reactions occurring in the destroyed plant cells.  相似文献   

10.
In this study, we investigated a novel application of matrix solid-phase dispersion (MSPD) methodology for the extraction of endogenous peptides from porcine hypothalamus tissue samples. Several experimental factors of the MSPD procedure were examined. Finally, silica-based octadecyl was chosen as dispersing material and blended with 0.25 g porcine hypothalamus at a ratio of 5, and 10 mL of 60% acetonitrile with 0.2% formic acid in water was chosen as the extraction and elution solvent. This MSPD extraction method was compared to the classic acid extraction method. More peaks were observed in the MSPD extracts (74±5) by MALDI-TOF MS than in acid extracts (34±5). Moreover, 14 potential endogenous peptides were identified in the MSPD extracts after nanoLC-MS/MS analysis, while only 2 endogenous peptides in the acid extracts. These results indicated that MSPD could be employed as a simple and efficient method for the extraction of endogenous peptides from tissues.  相似文献   

11.
Organophosphorus pesticides (OPPs), widely known as persistent organic pollutants, are the most popular contaminants in agriculture products in developing countries. The determination of OPPs in complex matrices, such as food, environmental and biological samples, usually requires extensive sample pretreatment. This review focuses on the sorptive extraction techniques applied as sample pretreatment for OPPs in complex matrices, including solid-phase extraction (SPE) and solid-phase microextraction (SPME). These methods are evaluated and the applications of each technique are demonstrated extensively with many practical examples.  相似文献   

12.
High-temperature headspace solid-phase microextraction (SPME) with simultaneous (“in situ”) derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC–MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane–ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride–pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200°C in a blockheater. The SPME fiber is then injected into the GC–MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 μg/l), barbiturates (500 μg/l), benzodiazepines (100 μg/l), benzoylecgonine (150 μg/l), methadone (100 μg/l) and opiates (200 μg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid–liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.  相似文献   

13.
Matrix solid phase dispersion (MSPD)   总被引:2,自引:0,他引:2  
A review of the many uses of matrix solid phase dispersion (MSPD) in the extraction and analysis of a variety of compounds from a range of samples is provided. Matrix solid phase dispersion (MSPD) has found particular application as a somewhat generic analytical process for the preparation, extraction and fractionation of solid, semi-solid and/or highly viscous biological samples. Its simplicity and flexibility contribute to it being chosen over more classical methods for these purposes. MSPD is based on several simple principles of chemistry and physics, involving forces applied to the sample by mechanical blending to produce complete sample disruption and the interactions of the sample matrix with a solid support bonded-phase (SPE) or the surface chemistry of other solid support materials. These principles are discussed as are the factors to be considered in conducting a MSPD extraction.  相似文献   

14.
A review of the many uses of matrix solid phase dispersion (MSPD) in the extraction and analysis of a variety of compounds from a range of samples is provided. Matrix solid phase dispersion (MSPD) has found particular application as a somewhat generic analytical process for the preparation, extraction and fractionation of solid, semi-solid and/or highly viscous biological samples. Its simplicity and flexibility contribute to it being chosen over more classical methods for these purposes. MSPD is based on several simple principles of chemistry and physics, involving forces applied to the sample by mechanical blending to produce complete sample disruption and the interactions of the sample matrix with a solid support bonded-phase (SPE) or the surface chemistry of other solid support materials. These principles are discussed as are the factors to be considered in conducting a MSPD extraction.  相似文献   

15.
We developed a reliable and effective method to determine costunolide and dehydrocostuslactone in the root of Saussurea lappa C. B.Clarke using matrix solid-phase dispersion (MSPD) extraction, HPLC separation and diode array detection (DAD). Several extraction parameters for the MSPD were optimized. Florisil was chosen as dispersing adsorbent with methanol as elution solvent. The ratio of Florisil to sample was selected to be 4:1 and no additional clean-up steps were needed. Linearities (r>0.9995) were determined to be in the range of 22.5-360.0 μg/mL for costunolide and 25.0-400.0 μg/mL for dehydrocostuslactone. Intra- and inter-day precisions were also determined with a relative standard deviation (RSD) less than 3.2%. The limits of detection were found to be 0.122 μg/mL for costunolide and 0.135 μg/mL for dehydrocostuslactone. The recoveries were in the range of 92.5-99.8% with relative standard deviations ranged from 1.2% to 3.5%. The proposed MSPD method required shorter time and lower solvent volume than maceration-ultrasonic and Soxhlet extraction methods.  相似文献   

16.
Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components.  相似文献   

17.
Introduction – Matrix solid‐phase dispersion (MSPD) is a very simple, cheap and relatively quick sample preparation procedure which involves simultaneous disruption and extraction of various solid and semi‐solid samples due to the direct mechanical blending of the sample with a SPE sorbent, mainly C18. Little is known about MSPD application as a sample preparation method for the analysis of essential oil components in herbs. Objective – To evaluate if C18 sorbent, commonly used in MSPD process, can be substituted with sand in the procedure of essential oil analysis. Methodology – Essential oil extracts were obtained from mint, sage, chamomile, marjoram, savory and oregano using MSPD with C18 sorbent or sand, pressurised liquid extraction and steam distillation. Their qualitative and quantitative compositions ware established by GC‐MS and GC‐FID. Results – The results prove that C18 sorbent can be substituted with sand in the procedure of essential oil analysis in herbs. The recoveries of essential oil components estimated using MSPD/sand are almost equal to those using pressurised liquid extraction. Conclusion – The results presented in the paper reveal that MSPD with sand is suitable for the isolation of essential oil components from herbs. Its extraction efficiency is equivalent to pressurised liquid extraction, recognised as one of the most efficient extraction methods. The cost of MSPD procedure for essential oil analysis can be significantly diminished by substituting C18 with sand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We improved our previous analytical method to measure phthalate metabolites in urine as biomarkers for phthalate exposure by automating the solid-phase extraction (SPE) procedure and expanding the analytical capability to quantify four additional metabolites: phthalic acid, mono-3-carboxypropyl phthalate, mono-isobutyl phthalate (miBP), and monomethyl isophthalate. The method, which involves automated SPE followed by isotope dilution-high performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS), allows for the quantitative measurement of 15 phthalate metabolites in urine with detection limits in the low ng/ml range. SPE automation allowed for the unattended sequential extraction of up to 100 samples at a time, and resulted in an increased sample throughput, lower solvent use, and better reproducibility than the manual SPE. Furthermore, the modified method permitted for the first time, the separation and quantification of mono-n-butyl phthalate (mBP) and its structural isomer miBP. The method was validated on spiked pooled urine samples and on pooled urine samples from persons with no known exposure to phthalates.  相似文献   

19.
A rapid method to identify and quantify unconjugated progestogens in eggs is presented. Samples were prepared based on matrix solid-phase dispersion (MSPD) using C18 as dispersant, followed by a clean-up step with graphitized carbon black (GCB) solid-phase extraction (SPE) cartridges. The analytes were separated by very high pressure LC on a BEH C18 column for a period of 5 min. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was operated in the positive time-scheduled multi-reaction monitoring mode. Recovery studies were performed at two fortification levels. Average recoveries of the target compounds varied from 83.8% to 111.2% and relative standard deviations ranged from 10.5% to 23.7%. The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 0.2-2.0 microg kg(-1) and 0.6-5.0 microg kg(-1), respectively. Investigation of real samples indicated that the range of progesterone in eggs was 9.9-40.0 microg kg(-1).  相似文献   

20.
松毛虫性信息素的固相微萃取及质谱和触角电位分析   总被引:2,自引:1,他引:1  
松毛虫性信息素成分在腺体中含量很低。本研究利用固相微萃取(SPME)技术近距离长时间采集单头云南松毛虫Dendrolimus houi处女雌蛾释放的性信息素成分, 并进一步利用气相色谱-质谱(GC-MS)和气相色谱-触角电位联用(GC-EAD)技术分析SPME采集的性信息素成分。 结果显示: 在云南松毛虫处女雌蛾求偶召唤期间SPME聚乙二醇/二乙烯基苯(CAR/DVB)萃取头吸附了大量的反5, 顺7-十二碳二烯醇(E5, Z7-12:OH)和反5, 顺7-十二碳二烯乙酸酯(E5, Z7-12:OAc)成分及微量的反5, 顺7-十二碳二烯醛(E5, Z7-12:Ald)成分, 这3种腺体成分均能激起云南松毛虫雄虫触角电位反应。与溶剂浸提昆虫性信息素成分的方法比较, SPME活体采样技术和GC-MS及GC-EAD分析方法联用研究昆虫的信息素成分具有采集的样品代表性强、样品量能满足色谱分析需要和无溶剂干扰等方面的优点。最后还着重讨论了SPME技术的应用价值、效果及实际应用中应该注意的一些问题。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号