首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Genome annotation of the plant pathogen Xanthomonas axonopodis pv. citri (Xac), identified flagellar genes in a 15.7 kb gene cluster. However, FlgN, a secretion chaperone for hook-associated proteins FlgK and FlgL, was not identified. We performed extensive screening of the X. axonopodis pv. citri genome with the yeast two-hybrid system to identify a protein with the characteristics of the flagellar chaperone FlgN. We found a candidate (XAC1990) encoded by an operon for components of the flagellum apparatus that interacted with FlgK. In order to further support this finding, Xac FlgK and XAC1990 were cloned, expressed, and purified. The recombinant proteins were characterized by spectroscopic methods and their interaction in vitro confirmed by pull-down assays. We, therefore, conclude that XAC1990 and its homologs in other Xanthomonas species are, in fact, FlgN proteins. These observations extend the sequence diversity covered by this family of proteins.  相似文献   

2.
Several Gram-negative bacterial pathogens have developed type III secretion systems (T3SSs) to deliver virulence proteins directly into eukaryotic cells in a process essential for many diseases. The type III secretion processes require customized chaperones with high specificity for binding partners, thus providing the secretion to occur. Due to the very low sequence similarities among secretion chaperones, annotation and discrimination of a great majority of them is extremely difficult and a task with low scores even if genes are encountered that codify for small (<20 kDa) proteins with low pI and a tendency to dimerise. Concerning about this, herein, we present structural features on two hypothetical T3SSs chaperones belonging to plant pathogen Xanthomonas axonopodis pv. citri and suggest how low resolution models based on Small Angle X-ray Scattering patterns can provide new structural insights that could be very helpful in their analysis and posterior classification.  相似文献   

3.
Xanthan-deficient mutants of Xanthomonas axonopodis pv. citri, the bacterium responsible for citrus canker, were generated by deletion and marker exchange of the region encoding the carboxy-terminal end of the first glycosyltransferase, GumD. Mutants of gumD did not produce xanthan and remained pathogenic in citrus plants to the same extent as wild-type bacteria. The kinetics of appearance of initial symptoms, areas of plant material affected, and growth of bacteria inside plant tissue throughout the disease process were similar for both wild-type and mutant inoculations. Moreover, exopolysaccharide deficiency did not impair the ability of the bacteria to induce hypersensitive response on non-host plants. Apart from variations in phenotypic aspects, no differences in growth or survival under different stress conditions were observed between the xanthan-deficient mutant and wild-type bacteria. However, gumD mutants displayed impaired survival under oxidative stress during stationary phase as well as impaired epiphytic survival on citrus leaves. Our results suggest that xanthan does not play an essential role in citrus canker at the initial stages of infection or in the incompatible interactions between X. axonopodis pv. citri and non-host plants, but facilitates the maintenance of bacteria on the host plant, possibly improving the efficiency of colonization of distant tissue.  相似文献   

4.
The oligopeptide permease (Opp), a protein-dependent ABC transporter, has been found in the genome of Xanthomonas axonopodis pv. citri (Xac), but not in Xanthomonas campestris pv. campestris (Xcc). Sequence analysis indicated that 4 opp genes (oppA, oppB, oppC, oppD/F), located in a 33.8-kbp DNA fragment present only in the Xac genome, are arranged in an operon-like structure and share highest sequence similarities with Streptomyces roseofulvus orthologs. Nonetheless, analyses of the GC content, codon usage, and transposon positioning suggested that the Xac opp operon does not have an exogenous origin. The presence of a stop codon at one of the ATP-binding domains of OppD/F would render the uptake system nonfunctional, but detection of a single polycistronic mRNA and periplasmic OppA in actively growing bacteria suggests that the Opp permease is active and could contribute to the distinct nutritional requirements and host specificities of the two Xanthomonas species.  相似文献   

5.
6.
Two uvrA-like genes, designated uvrA1 and uvrA2, that may be involved in nucleotide excision repair in Xanthomonas axonopodis pv. citri (X. a. pv. citri) strain XW47 were characterized. The uvrA1 gene was found to be 2,964 bp in length capable of encoding a protein of 987 amino acids. The uvrA2 gene was determined to be 2,529 bp with a coding potential of 842 amino acids. These two proteins share 71 and 39% identity, respectively, in amino acid sequence with the UvrA protein of Escherichia coli. Analyses of the deduced amino acid sequence revealed that UvrA1 and UvrA2 have structures characteristic of UvrA proteins, including the Walker A and Walker B motifs, zinc finger DNA binding domains, and helix-turn-helix motif with a polyglycine hinge region. The uvrA1 or uvrA2 mutant, constructed by gene replacement, was more sensitive to DNA-damaging agents methylmethane sulfonate (MMS), mitomycin C (MMC), or ultraviolet (UV) than the wild type. The uvrA1 mutant was four orders of magnitude more sensitive to UV irradiation and two orders of magnitude more sensitive to MMS than the uvrA2 mutant. The uvrA1uvrA2 double mutant was one order of magnitude more sensitive to MMS, MMC, or UV than the uvrA1 single mutant. These results suggest that UvrA1 plays a more important role than UvrA2 in DNA repair in X. a. pv. citri. Both uvrA1 and uvrA2 genes were found to be constitutively expressed in the wild type and lexA1 or lexA2 mutant of X. a. pv. citri, and treatment of these cells with sublethal dose of MMC did not alter the expression of these two genes. Results of electrophoresis mobility shift assays revealed that LexA1 or LexA2 does not bind to either the uvrA1 or the uvrA2 promoter. These results suggest that uvrA expression in X. a. pv. citri is not regulated by the SOS response system.  相似文献   

7.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

8.
Fowl cholera, caused by Pasteurella multocida (A:3), is a fearsome disease leading to a nonproductive influence upon poultry industry. It has been known that outer membrane protein H (OmpH) in the bacterium is a strong candidate to bring on the notorious ailment. Genetically modified (GM) tobacco (Nicotiana tabacum cv. Petit Havana) harboring ompH(A:3) was constructed to develop a plant expression system for the protein, OmpH(A:3). Some 987 bp-long (ORF with the stop codon, TAA) of the ompH(A:3) excluding the nucleotide for signal peptide, was amplified by RT-PCR with the gene specific primers and pGEM-T-ompH(A:3) as template DNA. The PCR-amplified DNA was ligated into BamHI/Sacl-cut pBI121 to obtain a recombinant plasmid, pBI121-ompH(A:3). It was then transformed into Agrobacterium tumefaciens (LBA 4404) by liquid nitrogen method to generate a recombinant clone of Agrobacterium LBA4404/pBI121-ompH(A:3). The Agrobacterium LBA4404/pBI121-ompH(A:3) was inoculated into leaf discs of tobacco (2 day old). The gene-transfected leaves were cultured on Murashige-Skoog basal medium containing kanamycin (50 mg/mL) to generate numerous calli, from which some GM tobacco plants were obtained. Transgenicity of the tobacco plant was confirmed by PCR screening along with the DNA sequencing. Also, its expression in the GM-tobacco was examined qualitatively as well as quantitatively by ELISA/Western blot. These results suggest that the genetically modified tobacco plant can be potentially used as a model system to develop plant-based vaccine against the fowl cholera.  相似文献   

9.
10.
Black rot, caused by Xanthomonas campestris pv. campestris (Pammel) Dowson (Xcc), is one of the most damaging diseases of cauliflower and other crucifers. In order to investigate the molecular resistance mechanisms and to find the genes related to black rot resistance in cauliflower, a suppression subtractive hybridization (SSH) cDNA library was constructed using resistant line C712 and its susceptible near-isogenic line C731 as tester and driver, respectively. A total of 280 clones were obtained from the library by reverse northern blotting. Sequencing analysis and homology searching showed that these clones represent 202 unique sequences. The library included many defense/disease-resistant related genes, such as plant defensin gene PDF1.2, lipid transfer protein, thioredoxin h. Gene expression profiles of 12 genes corresponding to different functional categories were monitored by real-time RT-PCR. The results showed that the expression induction of these genes in the susceptible line C712 in response to Xcc was quicker and more intense, while in C731 the reaction was delayed and limited. Our results imply that these up-regulated genes might be involved in cauliflower responses against Xcc infection. Information obtained from this study could be used to understand the molecular mechanisms of disease response in cauliflower under Xcc stress.  相似文献   

11.
Xanthomonas campestris pv. campestris (Pammel) Dowson (Xcc) causing black rot of crucifers is a serious disease in India and causes >50% crop losses in favorable environmental conditions. Pathogenic variability of Xcc, X. oryzae pv. oryzae (Xoo), and X. axonopodis pv. citri (Xac) were tested on 19 cultivars of cruciferae including seven Brassica spp. viz., B. campestris, B. carinata, B. juncea, B. napus, B. nigra, B. oleracea and B. rapa, and Raphanus sativus for two consecutive years viz., 2007–2008 and 2008–2009 under field conditions at Indian Agricultural Research Institute, New Delhi. Xcc (22 strains) and other species of Xanthomonas (2 strains), they formed three distinct groups of pathogenic variability i.e., Group 1, 2, and 3 under 50% minimum similarity coefficient. All strains of Xcc clustered under Groupl except Xcc-C20. The strains of Xcc further clustered in 6 subgroups viz., A, B, C, D, E, and F based on diseases reaction on host. Genetic variability of 22 strains of Xcc was studied by using Rep-PCR (REP-, BOX- and ERIC-PCR) and 10 strains for hrp (hypersensitive reaction and pathogenecity) gene sequence analysis. Xcc strains comprised in cluster 1, Xac under cluster 2, while Xoo formed separate cluster 3 based on >50% similarity coefficient. Cluster 1 was further divided into 8 subgroups viz., A, B, C, D, E, F, G, and H at 75% similarity coefficient. The hrpF gene sequence analysis also showed distinctness of Xcc strains from other Xanthomonads. In this study, genetic and pathogenic variability in Indian strains of Xcc were established, which will be of immense use in the development of resistant genotypes against this bacterial pathogen.  相似文献   

12.
13.
14.
15.
Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca2+ is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific changes in its intracellular concentration. Ca2+-binding proteins such as calmodulin (CaM) detect Ca2+ signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant’s immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca2+ in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca2+-dependent signals during the plant immune response to bacterial pathogens. This work was supported by a research grant (WAS) and postgraduate scholarships (DC, SLD) from the Natural Science and Engineering Research Council of Canada, the National Science Foundation (IBN-0109633; GBM), and the Swedish Research Council (SKE).  相似文献   

16.
The effects of Chinese cabbage (Brassica rapa subsp. pekinensis) carrying cry1AC derived from Bacillus thuringiensis (Bt) on leaf bacterial community were examined by analyzing the horizontal transfer of trans-gene fragments from plants to bacteria. The effect of plant pathogenic bacteria on the gene transfer was also examined using Pseudomonas syringae pathovar. maculicola. The frequency of hygromycin-resistant bacteria did not alter in Bt leaves, though slight increase was observed in Pseudomonas-infected Bt leaves with no statistical significance. The analysis of bacterial community profiles using the denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated that there were slight differences between Bt and control Chinese cabbage, and also that infected tissues were dominated by P. syringae pv. maculicola. However, the cultured bacterial pools were not found to contain any transgene fragments. Thus, no direct evidence of immediate gene transfer from plant to bacteria or acquisition of hygromycin resistance could be observed. Still, long-term monitoring on the possibility of gene transfer is necessary to correctly assess the environmental effects of the Bt crop on bacteria.  相似文献   

17.
Attacin, a 20 kDa antibacterial peptide, plays an important role in immunity. To understand this gene better, gene cloning, expression and biological activity detection of Attacin A was carried out in present study. The full-length open reading frame (ORF) coding for Attacin A gene was generated using RT-PCR which takes total RNA extracted from Drosophila as the template. The gene was inserted directionally into the prokaryotic expression vector pET-32a (+). The resulting recombinant plasmid was transformed into E. coli Rosetta. SDS–PAGE was carried out to detect the expression product which was induced by IPTG. The antimicrobial activity and hemolysis activity were tested in vitro after purification. Agarose gel electrophoresis indicated that the complete ORF of Attacin A gene has been cloned successfully from Drosophila stimulated by E. coli which includes 666 bp and encodes 221 AA. The gene encoding mature Attacin A protein was amplified by PCR from the recombinant plasmid containing Attacin A, which includes 570 bp in all. SDS–PAGE analysis demonstrated that the fusion protein expressed was approximately 39.2 kDa. Biological activities detection showed that this peptide exhibited certain antibacterial activity to several G− bacteria, as well as minor hemolysis activity for porcine red blood cells. In conclusion, Attacin A gene was cloned and expressed successfully. It was the basis for further study of Attacin.  相似文献   

18.
A gene encoding the B subunit of the enterotoxigenic Escherichia coli heat-labile enterotoxin (LTB) was adapted to the optimized plant coding sequence, and fused to the endoplasmic reticulum retention signal SEKDEL in order to enhance its expression level and protein assembly in plants. The synthetic LTB (sLTB) gene was placed into a plant expression vector under the control of the CaMV 35S promoter, and subsequently introduced into the watercress (Nasturtium officinale L.) plant by the Agrobacterium-mediated transformation method. The integration of the sLTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The assembly of plant-produced LTB protein was detected by western blot analysis. The highest amount of LTB protein produced in transgenic watercress leaf tissue was approximately 1.3% of the total soluble plant protein. GM1-ganglioside enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is the receptor for biologically active LTB on the cell surface, suggesting that the plant-synthesized LTB subunits formed biologically active pentamers.  相似文献   

19.
An Agrobacterium tumefaciens-based transformation procedure was developed for the desiccation tolerant species Lindernia brevidens. Leaf explants were infected with A. tumefaciens strain GV3101 harbouring a binary vector that carried the hygromycin resistance gene and an eGFP reporter gene under the control of a native dehydration responsive LEA promoter (Lb2745pro). PCR analysis of the selected hygromycin-resistant plants revealed that the transformation rates were high (14/14) and seeds were obtained from 13/14 of the transgenic lines. A combination of RNA gel blot and microscopic analyses demonstrated that eGFP expression was induced upon dehydration and ABA treatment. Comparison with existing procedures used to transform the well studied resurrection plant and close relative, Craterostigma plantagineum, revealed that the transformation process is both rapid and leads to the production of viable seed thus making L. brevidens a candidate species for functional genomics approaches to determine the genetic basis of desiccation tolerance.  相似文献   

20.
Xylella fastidiosa was the first phytopathogen to be completely sequenced, and its genome revealed several interesting features to be used in functional studies. In the present work, the htpX gene, which encodes a protein involved in the heat shock response in other bacteria, was analyzed by RT-PCR by using cells derived from different cultural conditions. This gene was induced after a temperature upshift to 37°C after growth in minimal medium, XDM, but showed constitutive expression in rich medium or in XDM plus plant extracts. Sequences upstream to the htpX gene, containing a putative regulatory region, were also transferred to E. coli, and the thermoregulation was maintained in the new host, since it was constitutively transcribed at 37°C or 45°C in all culture media tested, but not at 28°C in minimal culture medium. The gene was also cloned into the expression vector pET32Xa/LIC, and the expression of the corresponding protein was confirmed by Western blotting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号