首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
掌叶木的花器官发生及其系统学意义   总被引:7,自引:0,他引:7  
利用扫描电子显微镜和光学显微镜观察了掌叶木的花器官发生过程。观察结果表明: 花序原基最先发生, 然后形成两个大小不一的花原基; 萼片原基的发生不同步, 螺旋状向心发生; 4-5枚花瓣原基以接近轮状方式近同时发生; 不存在花瓣-雄蕊复合原基; 7-8枚雄蕊原基为近同时发生, 其生长较花瓣原基快; 心皮原基最后发生, 3枚心皮原基为同时发生。花为单性花。在雌花中, 子房膨大而雄蕊退化。在雄花中, 雄蕊正常发育, 子房退化。讨论了掌叶木花器官发生和发育的系统学意义。  相似文献   

2.
Floral development and vascular anatomy are investigated in Peganum harmala, emphasizing its unusual androccium with 15 stamens. Sepals arise successively; petals emerge simultaneously with five antesepalous stamens. The five stamen pairs arise in the space between the petals and the antesepalous stamens. The gynoecium arises from three carpel primordia with evidence of two reduced carpels. Placentae are axile and each bears two double rows of ovules. A weakly developed nectary surrounds the base of the ovary. The antepetalous stamen traces diverge from a common supply to petals and sepal laterals, independent of the antesepalous stamen traces. The androecium of Peganum is described as a derived obdiploste-monous form, differing from the complex haplostemonous androecium of Nitraria. “Congenital dédoublement” cannot adequately explain the origin of the paired antepetalous stamens; two stamens can arise either by the splitting of a common primordium or independently, and both ways of inception are best understood as extremes of a gradation. The systematic position of Peganum is discussed in relation to other Zygophyllaceae using a cladistic analysis with Ptelea (Rutaceae) and Quassia (Simaroubaceae) as outgroups. The basal division in the Zygophyllaceae is between Peganum and the rest of the family.  相似文献   

3.
The comparative floral ontogeny of five species belonging to the primuloid clade of the Ericales are investigated, viz. Maesa japonica, M. perlarius, Aegiceras corniculatum, Embelia laeta and E. ribes. All five species basically show 2/5-spiral phyllotaxis of the sepal primordia, although with some minor modification (particularly in Embelia, where the flowers are predominantly tetramerous). The phyllotaxis of the common petal-stamen primordia is also 2/5-spiral in the Maesa and Aegiceras species investigated, but appears to be unidirectional in Embelia. All five species develop common petal-stamen primordia in which the resultant petal primordia are larger than the stamen primordia, and in which the stamens develop proximally on the adaxial flank of the common primordia. Growth of the placenta in Maesa and Aegiceras partially embeds the ovules, but in Embelia the ovules are almost fully immersed in placental tissue at maturity. A comprehensive review of all previously published studies of floral ontogeny of primuloid genera is presented, and the phylogenetic significance of the variation between genera is evaluated with reference to recently published cladograms.  相似文献   

4.
通过扫描电镜观察了宽叶泽苔草Caldesia grandisSamuel.的花器官发生。宽叶泽苔草 的萼片3枚,逆时针螺旋向心发生 ;花瓣3枚,呈一轮近同时发生,未观察到花瓣_雄蕊复合原基;雄蕊、心皮原基皆轮状向心 发生,最先近同时发生的6枚原基全部发育成雄蕊,随后发生的6枚原基早期并无差别,在发 育过程中逐渐出现形态差异,直至其中1-4枚发育成心皮,其余的发育成雄蕊;而后的几轮 心皮原基,6枚一轮,陆续向心相间发生。本文揭示了3枚萼片螺旋状的发生方式,并推测这种螺旋方式是泽泻科植物进化过程中保留下来  相似文献   

5.
The floral development and anatomy ofChrysosplenium alternifolium were studied with the scanning electron microscope and light microscope to understand the initiation sequence of the floral organs and the morphology of the flower, and to find suitable floral characters to interpret the systematic position of the genus within the Saxifragaceae. The tetramerous flower shows a highly variable initiation sequence. The median sepals and first stamens arise in a paired sequence resembling a dimerous arrangement, but the first sepal and stamen arise on the side opposite to the bract. Transversal sepals and stamens emerge sequentially, as one side often precedes the other; sepals and stamens occasionally arise on common primordia. Initiation of the gynoecium is more constant with two median carpel primordia arising on a sunken floral apex. Several flowers were found to be pentamerous with a 2/5 initiation sequence. Flowers were invariably found to be apetalous without traces of petals in primordial stages; this condition is interpreted as an apomorphy. It is postulated that the development of a broad gynoecial nectary is responsible for the occurrence of an obdiplostemonous androecium. The gynoecium shows a number of anatomical particularities not observed in other Saxifragaceae. The presence and distribution of colleters is discussed.  相似文献   

6.
The floral ontogeny and anatomy ofKoelreuteria paniculata have been investigated to understand the developmental basis for the occurring monosymmetry and the origin of the septal cavities. Petals arise sequentially and one petal is missing between sepals 3 and 5, or rarely between sepals 2 and 5. The eight stamens arise sequentially before petal initiation is completed. The last formed petal and one stamen arise on a common primordium. Two stamen positions are empty (opposite the petal between the sepals 2 and 5, and the petal between sepal 1 and 3); consequently two antesepalous stamens have become displaced. The derivation of octandry from a diplostemonous ancestry, and reduction of the petal are discussed. The triangular gynoecium has a strong impact in obliquely reorganizing the symmetry of the flower, loss of organs, and shifts of stamens. The so-called septal slits occurring within the style are a deepreaching non-nectariferous extension of the stigma. Alternating locular furrows are present which could play a role as pollen transmitting tissue and in the loculicid dehiscence of the capsule.  相似文献   

7.
The inflorescence and floral development of Caldesia grandis Samuel is reported for the first time in this paper. The basic units of the large cymo‐thyrsus inflorescence are short panicles that are arranged in a pseudowhorl. Each panicle gives rise spirally to three bract primordia also arranged in a pseudowhorl. The branch primordia arise at the axils of the bracts. Each panicle produces spirally three bract primordia with triradiate symmetry (or in a pseudowhorl) and three floral primordia in the axils of the bract primordia. The apex of the panicle becomes a terminal floral primordium after the initiations of lateral bract primordia and floral primordia. Three sepal primordia are initiated approximately in a single whorl from the floral primordium. Three petal primordia are initiated alternate to the sepal primordia, but their subsequent development is much delayed. The first six stamen primordia are initiated as three pairs in a single whorl and each pair appears to be antipetalous as in other genera of the Alismataceae. The stamen primordia of the second whorl are initiated trimerously and opposite to the petals. Usually, 9–12 stamens are initiated in a flower. There is successive transition between the initiation of stamen and carpel primordia. The six first‐initiated carpel primordia rise simultaneously in a whorl and alternate with the trimerous stamens, but the succeeding ones are initiated in irregular spirals, and there are 15–21 carpels developed in a flower. Petals begin to enlarge and expand when anthers of stamens have differentiated microsporangia. Such features do not occur in C. parnassifolia. In the latter, six stamen primordia are initiated in two whorls of three, carpel primordia are initiated in 1–3 whorls, and there is no delay in the development of petals. C. grandis is thus considered more primitive and C. parnassifolia more derived. C. grandis shares more similarities in features of floral development with Alsma, Echinodorus, Luronium and Sagittaria. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 39–47.  相似文献   

8.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

9.
赵祥  苏雪  吴海燕  张辉  孙坤 《植物研究》2020,40(6):813-819
利用扫描电镜(SEM)观察了突脉金丝桃(Hypericum przewalskii)(金丝桃科)的花部器官发生发育过程。结果表明,突脉金丝桃2枚苞片原基首先发生,花原基在苞片原基的包裹中完成发育。在苞片原基发生后,5枚萼片原基沿2/5圆周依次发生。萼片原基发生近完成时,5枚雄蕊—花瓣共同原基在萼片原基之间的角隅处近同时发生,此后,雄蕊—花瓣共同原基下部向外伸展形成花瓣原基,上部向上凸起形成与花瓣原基相对的雄蕊原基,之后雄蕊原基由内向外依次分化发育产生次生雄蕊原基,随着次生雄蕊原基的发育和数目的增多,形成了5束雄蕊。次生雄蕊原基发生的同时,5枚心皮原基近同时发生。突脉金丝桃雄蕊束的发生方式表明,金丝桃属的雄蕊束可能起源于5基数的单轮雄蕊。金丝桃科与藤黄科植物花瓣及雄蕊原基发生方式的显著不同,支持了APG Ⅲ系统将金丝桃亚科从藤黄科中独立为金丝桃科的观点。  相似文献   

10.
Distinctions in floral ontogeny among three segregate genera (Cassia sensu stricto, Chamaecrista, and Senna) of Cassia L. support their separation. In all species studied, the order of floral organ initiation is: sepals, petals, antesepalous stamens plus carpel, and lastly antepetalous stamens. Sepal initiation is helical in all three genera, which however differ in whether the first sepal is initiated in median abaxial position (Senna), or abaxial and off-median (Cassia javanica), a rare character state among legumes. Order of petal initiation varies: helical in Senna vs. unidirectional in Cassia and Chamaecrista. Both stamen whorls are uniformly unidirectional. Intergeneric ontogenetic differences occur in phyllotaxy, inflorescence architecture, bracteole formation, overlap of initiation among organ whorls (calyx/corolla in Cassia; two stamen whorls in Chamaecrista), eccentric initiation on one side of a flower, anther attachment, anther pore structure, and precocious carpel initiation in Senna. The asymmetric corolla and androecium in Chamaecrista arise by precocious organ initiation on one side (left or right). The poricidal anther character can result from differing developmental pathways: lateral slits vs. sealing of lateral sutures; clasping hairs vs. sutural ridges; terminal pores (one or two) vs. none; and clamp layer formation internally that prevents lateral dehiscence. Genera differ in corolla aestivation patterns and in stigma type. Convergence is shown among the three genera, based on intergeneric dissimilarities in early floral ontogeny (floral position in the inflorescence, bracteole presence, position of the first sepal initiated, order of petal initiation, asymmetric initiation, overlap between whorls, anther morphology, and time of carpel initiation) resulting in similarities at anthesis (showy, mostly yellow salverform flowers, heteromorphic stamens, poricidal anther dehiscence, bee pollination, and chambered stigma).  相似文献   

11.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

12.
罗敏蓉 《广西植物》2020,40(11):1645-1652
花的发生和发育过程研究可以发现早期进化的轨迹,为系统发育的研究提供重要线索。蓝堇草属(Leptopyrum)为毛茛科唐松草亚科一单种属,仅包含蓝堇草一种,其花的发生和发育过程仍为空白。为了深入理解唐松草亚科乃至毛茛科花发育多样性和演化规律,该文运用扫描电子显微镜(SEM)观察了蓝堇草各轮花器官的形态发生和发育过程。结果表明:该属植物所有的萼片、花瓣、雄蕊和雌蕊均为螺旋状发生,花器官排列式样也为螺旋状; 5枚萼片原基宽阔,5枚花瓣原基圆球形、位于萼片原基的间隔,且在后期表现为延迟发育现象,雄蕊原基较小、为圆球形; 花瓣原基和雄蕊原基连续发生,无明显的时空间隔,但与萼片原基有时空间隔; 心皮原基为马蹄形对折,柱头组织由单细胞乳突组成; 胚珠倒生、具单珠被。该属花器官螺旋状排列、胚珠具单珠被在唐松草亚科中是独有的性状,花发育形态学证据支持了该属的特殊性。  相似文献   

13.
Among the 16 genera of the Berberidaceae Achlys is the only one with a reduced perianth, an irregular floral phyllotaxis, and variable stamen number. Early floral stages show an unstable (chaotic) arrangement of the organ primordia. Only the single carpel of the gynoecium has a more fixed position in that the placenta is formed in the adaxial half of the flower. The irregularities in the androecium may be caused by the lack of influence of a perianth on floral symmetry. On the other hand, the regular orientation of the carpel is perhaps due to the early polarity of the flower, whereby the abaxial half of the flower is larger (with further developed stamen primordia) at the time when carpel polarity is established.  相似文献   

14.
泽苔草的花器官发生   总被引:9,自引:2,他引:7  
本文用扫描电镜观察了泽苔草的花器官发生过程,观察结果表明:花萼以螺旋状方式向心发生,花瓣以接近轮状方式近同时发生,不存在花瓣雄蕊复合原基。雄蕊和心皮均以轮状向心方式发生,6枚雄蕊分两轮分别在对萼和对瓣的位置先后发生,至发育的后期排成一轮,但仍分别处于对萼和对瓣的位置;随后发生的第一轮3个心皮原基与3枚萼片相对,第二、三轮心皮原基分别为1~3个,与前一轮心皮相间排列向心发生。本文首次揭示了泽苔草花被的外轮3个萼片螺旋状发生方式,这种螺旋状方式很可能是泽泻科植物的花部结构在进化过程中适应环境而保留下来的一种较原始的叶性特征。  相似文献   

15.
The floral organogenesis and development of Delavaya toxocarpa Franch. (Sapindaceae) were studied under scanning electron microscope and light microscope to determine its systematic position within Sapindaceae. Flowers arise in terminal thyrses. The sepal primordia initiate in a spiral (2/5) sequence, which are not synchronous. The five petal primordia initiate almost synchronously and alternate with sepal primordia. Eight stamens initiate almost simultaneously and their differentiation precedes that of the petals. The last formed petal and one stamen initiate from a common primordium. Mature stamens curve inwards and cover the ovary in bud. The gynoecium begins as a hemispheric primordium on which two carpellary lobes arise simultaneously. Later in development a single gynocium is formed with two locules and two ovules per locule. Floral morphology suggests a closer affinity with Sapindaceae, although certain features of floral ontogenesis are similar to those observed in certain members of the former Hippocastanaceae, such as Handeliodendron.  相似文献   

16.
The flower of Kingdonia has a terminal position, thus the rhizome is sympodial. The floral organs initiate in spiral phyllotaxis. The androecium is centripetal in initiation but the sterile stamens are retarded in development compared with the fertile ones. The apex of the young carpel does not participate in the conduplication. The floral organs have single vascular traces and unilacunar nodes.The study was supported by the National Nature Science Foundation of China (No. 30370095 and 30130030).  相似文献   

17.
大戟科麻疯树属三种植物花器官发生   总被引:1,自引:0,他引:1  
利用扫描电子显微镜观察了大戟科Euphorbiaceae麻疯树属Jatropha麻疯树J. curcas L.、佛肚树J. podagrica Hook.和棉叶麻疯树J. gossypifolia L.花器官发生。结果表明: 麻疯树、佛肚树和棉叶麻疯树花萼原基均为2/5型螺旋发生。在同一个种不同的花蕾中, 花萼的发生有两种顺序: 逆时针方向和顺时针方向。远轴面非正中位的1枚先发生。5枚花瓣原基几乎同时发生。雄花中雄蕊两轮, 外轮对瓣, 内轮对萼。研究的3种麻疯树属植物雄蕊发生方式有两种类型: 麻疯树亚属麻疯树的5枚外轮雄蕊先同时发生, 5枚内轮雄蕊后同时发生, 佛肚树亚属佛肚树和棉叶麻疯树雄蕊8-9枚, 排成两轮, 内外轮雄蕊同时发生。雌花的3枚心皮原基为同时发生。麻疯树属单性花, 雌花的子房膨大而雄蕊退化, 雄花的雄蕊正常发育, 子房缺失。根据雄蕊发生方式, 支持将麻疯树属分为麻疯树亚属subgen. Jatropha和佛肚树亚属subgen. Curcas。  相似文献   

18.
The early floral ontogeny of three subfamilies, viz. Verbenoideae, Viticoideae and Caryopteridoideae of Verbenaceae (s.l.), was compared. Two differently initiated patterns were found. In the present species of Verbenoideae, there is a unidirectional sequence of organogenesis, from abaxial to adaxial side of the floral apex. While the abaxial paired sepal, petal and stamen arise sequentially, the adaxial paired sepal, petal and stamen do not appear or appear in a much earlier stage. The centripetal whorled sequence of organogenesis appears in Viticoideae and Caryopteridoideae, where sepal primordia arise simultaneously or successively (from adaxial to abaxial). After completion of sepal initiation a plastochron is indicated, during which time a change to the induction of petal takes place, and five petals appear simultaneously, followed by initiation of four stamens. Events of floral organogenesis support the phylogeny inferred from morphological data and rbcL sequence analysis, i.e. the subfamily Verbenoideae does not form a monophyletic group with the subfamilies Viticoideae and Caryopteridoideae.  相似文献   

19.
魏景  彭冶  杨立梅 《西北植物学报》2021,41(12):2072-2079
为探究垂丝海棠重瓣花成花原因,该研究以单瓣垂丝海棠和重瓣垂丝海棠为实验材料,应用体式显微镜和扫描电镜观察垂丝海棠单瓣、重瓣品种花器官分化过程;解剖观察重瓣垂丝海棠大蕾期的花与盛开的花,统计其花器官的形态与数目;应用R语言对重瓣垂丝海棠的花瓣数目与其余各轮花器官数目进行相关性分析。结果显示:(1)单瓣和重瓣垂丝海棠的花器官分化均分为萼片原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期,且各轮花器官按照向心顺序依次分化发育。(2)在花瓣原基分化期,单瓣垂丝海棠仅分化出一轮(5枚)均匀分布于两枚萼片交汇处的花瓣原基,而重瓣垂丝海棠分化出两轮分布散列的花瓣原基,第一轮为5~7枚,第二轮为7~10枚。(3)在重瓣垂丝海棠各轮花器官中存在较多萼片瓣化、雄蕊瓣化、雌雄蕊异常发育的情况。(4)重瓣垂丝海棠各轮花器官数目间相关性分析结果显示,其花瓣数目与雄蕊数目以及瓣化中的雄蕊数目间存在明显的正相关关系,该现象与常规雄蕊瓣化植物表现的雄蕊数目减少、花瓣数目增多的现象不同。研究表明,重瓣垂丝海棠花瓣数目的增多并不完全依赖于雄蕊变瓣,暗示垂丝海棠重瓣花成花原因的多元性与复杂性。  相似文献   

20.
The Scutellaria is a Labiatae genus (subfamily Scutellarioideae) with a highly specialised floral structure. The genus is characterised by a peculiar two‐lobed calyx with a projecting appendage, named the scutellum. Here, we present a detailed analysis of floral development, using epi‐illumination light microscopy, to clarify open questions about its floral organisation. Floral whorls appeared in an acropetal sequence, with a marked temporal overlap of petal and stamen appearance. Organ appearance in each whorl proceeded unidirectionally from the abaxial to the adaxial side. Significant developmental features included the formation of the scutellum, reduction of sepal lobes and formation of a three‐lobed nectary disc. Our study revealed that both loss of organ initiation and fusion of primordia are responsible for the reduction in sepal members in Scutellaria. The nectary structure was markedly different from most other studied Lamiaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号