首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.  相似文献   

2.
The origin and subsequent spread of plastids by endosymbiosis had a major environmental impact and altered the course of a great proportion of eukaryotic biodiversity. The ancestor of dinoflagellates contained a secondary plastid that was acquired in an ancient endosymbiotic event, where a eukaryotic cell engulfed a red alga. This is known as secondary endosymbiosis and has happened several times in eukaryotic evolution. Certain dinoflagellates, however, are unique in having replaced this secondary plastid in an additional (tertiary) round of endosymbiosis. Most plastid proteins are encoded in the nucleus of the host and are targeted to the organelle. When secondary or tertiary endosymbiosis takes place, it is thought that these genes move from nucleus to nucleus, so the plastid retains the same proteome. We have conducted large-scale expressed sequence tag (EST) surveys from Karlodinium micrum, a dinoflagellate with a tertiary haptophyte-derived plastid, and two haptophytes, Isochrysis galbana and Pavlova lutheri. We have identified all plastid-targeted proteins, analysed the phylogenetic origin of each protein, and compared their plastid-targeting transit peptides. Many plastid-targeted genes in the Karlodinium nucleus are indeed of haptophyte origin, but some genes were also retained from the original plastid (showing the two plastids likely co-existed in the same cell), in other cases multiple isoforms of different origins exist. We analysed plastid-targeting sequences and found the transit peptides in K.micrum are different from those found in either dinoflagellates or haptophytes, pointing to a plastid with an evolutionarily chimeric proteome, and a massive remodelling of protein trafficking during plastid replacement.  相似文献   

3.
Translocation of proteins across the multiple membranes of complex plastids.   总被引:18,自引:0,他引:18  
Secondary endosymbiosis describes the origin of plastids in several major algal groups such as dinoflagellates, euglenoids, heterokonts, haptophytes, cryptomonads, chlorarachniophytes and parasites such as apicomplexa. An integral part of secondary endosymbiosis has been the transfer of genes for plastid proteins from the endosymbiont to the host nucleus. Targeting of the encoded proteins back to the plastid from their new site of synthesis in the host involves targeting across the multiple membranes surrounding these complex plastids. Although this process shows many overall similarities in the different algal groups, it is emerging that differences exist in the mechanisms adopted.  相似文献   

4.
Plastids with two bounding membranes--as exemplified by red algae, green algae, plants, and glaucophytes--derive from primary endosymbiosis; a process involving engulfment and retention of a cyanobacterium by a phagotrophic eukaryote. Plastids with more than two bounding membranes (such as those of euglenoids, dinoflagellates, heterokonts, haptopytes, apicomplexa, cryptomonads, and chlorarachniophytes) probably arose by secondary endosymbiosis, in which a eukaryotic alga (itself the product of primary endosymbiosis) was engulfed and retained by a phagotroph. Secondary endosymbiosis transfers photosynthetic capacity into heterotrophic lineages, has apparently occurred numerous times, and has created several major eukaryotic lineages comprising upwards of 42,600 species. Plastids acquired by secondary endosymbiosis are sometimes referred to as "second-hand." Establishment of secondary endosymbioses has involved transfer of genes from the endosymbiont nucleus to the secondary host nucleus. Limited gene transfer could initially have served to stabilise the endosymbioses, but it is clear that the transfer process has been extensive, leading in many cases to the complete disappearance of the endosymbiont nucleus. One consequence of these gene transfers is that gene products required in the plastid must be targeted into the organelle across multiple membranes: at least three for stromal proteins in euglenoids and dinoflagellates, and across five membranes in the case of thylakoid lumen proteins in plastids with four bounding membranes. Evolution of such targeting mechanisms was obviously a key step in the successful establishment of each different secondary endosymbiosis. Analysis of targeted proteins in the various organisms now suggests that a similar system is used by each group. However, rather than interpreting this similarity as evidence of an homologous origin, I believe that targeting has evolved convergently by combining and recycling existing protein trafficking mechanisms already existing in the endosymbiont and host. Indeed, by analyzing the multiple motifs in targeting sequences of some genes it is possible to infer that they originated in the plastid genome, transferred from there into the primary host nucleus, and subsequently moved into the secondary host nucleus. Thus, each step of the targeting process in "second-hand" plastids recapitulates the gene's previous intracellular transfers.  相似文献   

5.
6.
In 1905, the Russian biologist C. Mereschkowsky postulated that plastids (e.g., chloroplasts) are the evolutionary descendants of endosymbiotic cyanobacteria-like organisms. In 1927, I. Wallin explicitly postulated that mitochondria likewise evolved from once free-living bacteria. Here, we summarize the history of these endosymbiotic concepts to their modern-day derivative, the “serial endosymbiosis theory”, which collectively expound on the origin of eukaryotic cell organelles (plastids, mitochondria) and subsequent endosymbiotic events. Additionally, we review recent hypotheses about the origin of the nucleus. Model systems for the study of “endosymbiosis in action” are also described, and the hypothesis that symbiogenesis may contribute to the generation of new species is critically assessed with special reference to the secondary and tertiary endosymbiosis (macroevolution) of unicellular eukaryotic algae.  相似文献   

7.
Photosynthetic dinoflagellates possess a great diversity of plastids that have been acquired through successful serial endosymbiosis. The peridinin-containing plastid in dinoflagellates is canonical, but many other types are known within this group. Within the Dinophysiales, several species of Dinophysis contain plastids, derived from cryptophytes or haptophytes. In this work, the presence of numerous intracellular cyanobacteria-like microorganisms compartmentalized by a separate membrane is reported for the first time within the benthic dinophysoid dinoflagellate Sinophysis canaliculata Quod et al., a species from a genus morphologically close to Dinophysis. Although the contribution of these cyanobacterial endosymbionts to S. canaliculata is still unknown, this finding suggests a possible undergoing primary endosymbiosis in a dinoflagellate.  相似文献   

8.
The three anomalously pigmented dinoflagellates Gymnodinium galatheanum, Gyrodinium aureolum, and Gymnodinium breve have plastids possessing 19'-hexanoyloxy-fucoxanthin as the major carotenoid rather than peridinin, which is characteristic of the majority of the dinoflagellates. Analyses of SSU rDNA from the plastid and the nuclear genome of these dinoflagellate species indicate that they have acquired their plastids via endosymbiosis of a haptophyte. The dinoflagellate plastid sequences appear to have undergone rapid sequence evolution, and there is considerable divergence between the three species. However, distance, parsimony, and maximum-likelihood phylogenetic analyses of plastid SSU rRNA gene sequences place the three species within the haptophyte clade. Pavlova gyrans is the most basal branching haptophyte and is the outgroup to a clade comprising the dinoflagellate sequences and those of other haptophytes. The haptophytes themselves are thought to have plastids of a secondary origin; hence, these dinoflagellates appear to have tertiary plastids. Both molecular and morphological data divide the plastids into two groups, where G. aureolum and G. breve have similar plastid morphology and G. galatheanum has plastids with distinctive features.  相似文献   

9.
10.
I discuss the evidence for a single origin of primary plastids in the context of a paper in this issue challenging this view, and I review recent evidence concerning the number of secondary plastid endosymbioses and the controversy over whether the relic plastid of apicomplexans is of red or green algal origin. A broad consensus has developed that the plastids of green algae, red algae, and glaucophytes arose from the same primary, cyanobacterial endosymbiosis. Although the analyses in this issue by Stiller and colleagues firmly undermine one of many sources of data, gene content similarities among plastid genomes used to argue for a monophyletic origin of primary plastids, the overall evidence still clearly favors monophyly. Nonetheless, this issue should not be considered settled and new data should be sought from better sampling of cyanobacteria and glaucophytes, from sequenced nuclear genomes, and from careful analysis of such key features as the plastid import apparatus. With respect to the number of secondary plastid symbioses, it is completely unclear as to whether the secondary plastids of euglenophytes and chlorarachniophytes arose by the same or two different algal endosymbioses. Recent analyses of certain plastid and nuclear genes support the chromalveolate hypothesis of Cavalier-Smith, namely, that the plastids of heterokonts, haptophytes, cryptophytes, dinoflagellates, and apicomplexans all arose from a common endosymbiosis involving a red alga. However, another recent paper presents intriguing conflicting data on this score for one of these groups—apicomplexans—arguing instead that they acquired their plastids from green algae.  相似文献   

11.
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis—the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection–drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.  相似文献   

12.
Takishita K  Ishida K  Maruyama T 《Protist》2004,155(4):447-458
Although most photosynthetic dinoflagellates have plastids with peridinin, the three dinoflagellate genera Karenia, Karlodinium, and Takayama possess anomalously pigmented plastids that contain fucoxanthin and its derivatives (19′-hexanoyloxy-fucoxanthin and 19′-butanoyloxy-fucoxanthin) instead of the peridinin. This pigment composition is similar to that of haptophytes. All peridinin-containing dinoflagellates investigated so far have at least two types of glyceraldehyde-3-phosphate dehydrogenase (GAPDH): cytosolic and plastid-targeted forms. In the present study, we cloned and sequenced genes encoding cytosolic and plastid-targeted GAPDH proteins from three species of the fucoxanthin derivative-containing dinoflagellates. Based on the molecular phylogeny, the plastid-targeted GAPDH genes of the fucoxanthin derivative-containing dinoflagellates were closely related to those of haptophyte algae rather than to the peridinin-containing dinoflagellates, while one of several cytosolic versions from the peridinin- and the fucoxanthin derivative-containing dinoflagellates are closely related to each other. Considering a previously reported theory that the plastid-targeted GAPDH from the peridinin-containing dinoflagellates originated by a gene duplication of the cytosolic form before the splitting of the dinoflagellate lineage, it is highly likely that the plastid-targeted GAPDH gene of the peridinin-containing dinoflagellates is original in this algal group and that in the fucoxanthin-containing dinoflagellates, the original plastid-targeted GAPDH was replaced by that of a haptophyte endosymbiont during a tertiary endosymbiosis. The present results strongly support the hypothesis that the plastids of the peridinin- and the fucoxanthin derivative-containing dinoflagellates are of separate origin.  相似文献   

13.
Plastids (photosynthetic organelles of plants and algae) are known to have spread between eukaryotic lineages by secondary endosymbiosis, that is, by the uptake of a eukaryotic alga by another eukaryote. But the number of times this has taken place is controversial. This is particularly so in the case of eukaryotes with plastids derived from red algae, which are numerous and diverse. Despite their diversity, it has been suggested that all these eukaryotes share a recent common ancestor and that their plastids originated in a single endosymbiosis, the so-called "chromalveolate hypothesis." Here we describe a novel molecular character that supports the chromalveolate hypothesis. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic and Calvin cycle enzyme that exists as two nonhomologous types, class I and class II. Red algal plastid-targeted FBA is a class I enzyme related to homologues from plants and green algae, and it would be predicted that the plastid-targeted FBA from algae with red algal secondary endosymbionts should be related to this class I enzyme. However, we show that plastid-targeted FBA of heterokonts, cryptomonads, haptophytes, and dinoflagellates (all photosynthetic chromalveolates) are class II plastid-targeted enzymes, completely unlike those of red algal plastids. The chromalveolate enzymes form a strongly supported group in FBA phylogeny, and their common possession of this unexpected plastid characteristic provides new evidence for their close relationship and a common origin for their plastids.  相似文献   

14.
Accounting for the diversity of photosynthetic eukaryotes is an important challenge in microbial biology. It has now become clear that endosymbiosis explains the origin of the photosynthetic organelle (plastid) in different algal groups. The first plastid originated from a primary endosymbiosis, whereby a previously non-photosynthetic protist engulfed and enslaved a cyanobacterium. This alga then gave rise to the red, green, and glaucophyte lineages. Algae such as the chlorophyll c-containing chromists gained their plastid through secondary endosymbiosis, in which an existing eukaryotic alga (in this case, a rhodophyte) was engulfed. Another chlorophyll c-containing algal group, the dinoflagellates, is a member of the alveolates that is postulated to be sister to chromists. The plastid in these algae has followed a radically different path of evolution. The peridinin-containing dinoflagellates underwent an unprecedented level of plastid genome reduction with the ca. 16 remaining genes encoded on 1–3 gene minicircles. In this short review, we examine algal plastid diversity using phylogenetic and genomic methods and show endosymbiosis to be a major force in algal evolution. In particular, we focus on the evolution of targeting signals that facilitate the import of nuclear-encoded photosynthetic proteins into the plastid.  相似文献   

15.
Plastids (the photosynthetic organelles of plants and algae) originated through endosymbiosis between a cyanobacterium and a eukaryote and subsequently spread to other eukaryotes by secondary endosymbioses between two eukaryotes. Mounting evidence favors a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their nonphotosynthetic relatives, termed chromalveolates), but so far, no single molecular marker has been described that supports this common origin. One piece of evidence comes from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrion-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts and found haptophyte homologs that branch within a strongly supported clade of chromalveolate plastid-targeted genes, being more closely related to an apicomplexan homolog than was expected. The evolution of plastid-targeted GAPDH supports red algal ancestry of apicomplexan plastids and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in nonphotosynthetic lineages such as ciliates.  相似文献   

16.
17.
ABSTRACT. The establishment of a new plastid organelle by secondary endosymbiosis represents a series of events of massive complexity, and yet we know it has taken place multiple times because both green and red algae have been taken up by other eukaryotic lineages. Exactly how many times these events have succeeded, however, has been a matter of debate that significantly impacts how we view plastid evolution, protein targeting, and eukaryotic relationships. On the green side it is now largely accepted that two independent events led to plastids of euglenids and chlorarachniophytes. How many times red algae have been taken up is less clear, because there are many more lineages with red alga‐derived plastids (cryptomonads, haptophytes, heterokonts, dinoflagellates and apicomplexa) and the relationships between these lineages are less clear. Ten years ago, Cavalier‐Smith proposed that these plastids were all derived from a single endosymbiosis, an idea that was dubbed the chromalveolate hypothesis. No one observation has yet supported the chromalveolate hypothesis as a whole, but molecular data from plastid‐encoded and plastid‐targeted proteins have provided strong support for several components of the overall hypothesis, and evidence for cryptic plastids and new photosynthetic lineages (e.g. Chromera) have transformed our view of plastid distribution within the group. Collectively, these data are most easily reconciled with a single origin of the chromalveolate plastids, although the phylogeny of chromalveolate host lineages (and potentially Rhizaria) remain to be reconciled with this plastid data.  相似文献   

18.
The chromalveolate hypothesis proposed by Cavalier-Smith (J Euk Microbiol 46:347–366, 1999) suggested that all the algae with chlorophyll c (heterokonts, haptophytes, cryptophytes, and dinoflagellates), as well as the ciliates, apicomplexans, oomycetes, and other non-photosynthetic relatives, shared a common ancestor that acquired a chloroplast by secondary endosymbiosis of a red alga. Much of the evidence from plastid and nuclear genomes supports a red algal origin for plastids of the photosynthetic lineages, but the number of secondary endosymbioses and the number of plastid losses have not been resolved. The issue is complicated by the fact that nuclear genomes are mosaics of genes acquired over a very long time period, not only by vertical descent but also by endosymbiotic and horizontal gene transfer. Phylogenomic analysis of the available whole-genome data has suggested major alterations to our view of eukaryotic evolution, and given rise to alternative models. The next few years may see even more changes once a more representative collection of sequenced genomes becomes available.  相似文献   

19.
Nostoc and Richelia belong to a group of heterocystous cyanobacteria and are unique within this group in forming intracellular symbioses with phototrophic hosts, the angiosperm Gunnera and the diatoms (algae) Rhizosolenia and Hemiaulus, respectively. The function of the cyanobiont is similar in the symbioses, namely providing fixed atmospheric nitrogen to their hosts; also the cyanobionts are contained in a host compartment, the symbiosome. The evolutionary timescale for the cyanobiont-endosymbiosis formation is in both instances about ≈90 Ma. However, the potentials for further co-evolution of host and microsymbiont, are different. Nostoc is regarded as preyed upon by its host, while in the Richelia-Rhizosolenia symbiosis example the evolution towards a new type of permanent organelle is possible. It is proposed that symbiosis is ruled by divergent host strategies. In the case of Richelia-Rhizosolenia the evolution of a permanent symbiosis is linked to diatom hosts needing to carry the cyanobiont permanently, as it is not available free-living in the oceans. However, in the case of Nostoc/Gunnera, the host exploits an abundant cyanobacterial species. A model where the relative abundance of microsymbionts determines the nature of the symbiosis comes into view: If environmental ratios of host/microsymbiont are so that hosts are the dominating party, then the host has to carry the microsymbiont as luggage (vertical transmission). Likewise, if the ratio of microsymbiont is higher than host, than the host will prey on the microsymbiont (horizontal transmission). The article also discusses the retention of secondary plastids in dinoflagellates. We show that dinoflagellates are organisms that exemplify both types of strategies that is either preying or harbouring a permanent organelle. The difference from the cyanobacterial example is that only parts of the eukaryotic microsymbionts are kept, usually only the plastid. We emphasize that the dinoflagellates can obtain their plastids from various different organisms. The luggage theory offers an explanation to why some dinoflagellate species contain kleptoplastids, while others have permanent, secondary plastids and some have tertiary plastids.  相似文献   

20.
The plastids of red algae, green plants, and glaucophytes may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis. In contrast, the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events involving a phototrophic eukaryote and a eukaryotic host cell. Although phylogenetic analyses of multiple plastid genes from a wide range of eukaryotic lineages have been carried out, the phylogenetic positions of the secondary plastids of the Chromista (Heterokontophyta, Haptophyta and Cryptophyta) are ambiguous in a range of different analyses. This ambiguity may be the result of unusual substitutions or bias in the plastid genes established by the secondary endosymbiosis. In this study, we carried out phylogenetic analyses of five nuclear genes of cyanobacterial origin (6-phosphogluconate dehydrogenase [gnd], oxygen-evolving-enhancer [psbO], phosphoglycerate kinase [pgk], delta-aminolevulinic acid dehydratase [aladh], and ATP synthase gamma [atpC] genes), using the genome sequence data from the primitive red alga Cyanidioschyzon merolae 10D. The sequence data robustly resolved the origin of the cyanobacterial genes in the nuclei of the Chromista (Heterokontophyta and Haptophyta) and Dinophyta, before the divergence of the extant red algae (including Porphyra [Rhodophyceae] and Cyanidioschyzon [Cyadidiophyceae]). Although it is likely that gnd genes in the Chromista were transmitted from the cyanobacterium-like ancestor of plastids in the primary endosymbiosis, other genes might have been transferred from nuclei of a red algal ancestor in the secondary endosymbiosis. Therefore, the results indicate that the Chromista might have originated from the ancient secondary endosymbiosis before the divergence of extant red algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号