首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae) is a key pest of maize [Zea mays L. (Poaceae)] and a main target of Bt maize in the Mediterranean area. To choose the most suitable non‐Bt refuge strategy for preventing or delaying resistance development in this maize borer, we examined its biology and behaviour. No antixenotic effects were found on numbers of eggs and egg batches per plant in choice (Bt vs. non‐Bt plants) and no‐choice assays. However, a greater ratio of young larvae dispersed from Bt than from non‐Bt plants. In addition, larvae that hatched on Bt plants tended to disperse more than those that hatched on non‐Bt plants, particularly during young growth stages. Many adults, especially females, could fly at least up to 400 m, as was found in a dispersal study with rubidium‐marked adults. The stimulation of larval dispersal by the Bt trait and the dispersal capacity of adults might compromise the efficacy of seed mixtures as an insecticide resistance management strategy.  相似文献   

2.
Bt maize, Zea mays L. (Poaceae) expressing Cry 1Ab insecticidal proteins was introduced for control of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) in South Africa after its development for control of crambid borers in North America. In the light of the reportedly lower toxicity of Bt maize to certain Noctuidae borers, the effect of Bt maize was evaluated on Sesamia calamistis (Hampson) (Lepidoptera: Noctuidae). The characteristic larval behaviour of S. calamistis may result in reduced exposure to Bt toxin and subsequent high levels of survival. Larvae do not feed on plant whorls like other borer species but penetrate stems directly from behind leaf sheaths where eggs are laid. Greenhouse and laboratory bioassays were done with three Bt maize hybrids and their iso‐hybrids. ‘Whole plant methods’ were used and potted plants artificially infested with eggs or larvae and survival recorded over time. Larval survival was also determined on different plant parts (whorls, stems, tillers, and ears) over time. Bt maize was shown to be highly toxic to S. calamistis. No larvae survived longer than 12–18 days on Bt maize plants in any of the experiments. Adults did not differentiate between Bt and non‐Bt plants in oviposition choice experiments. Sesamia calamistis is polyphagous and occurs in mixed populations with other borer species with which it shares many parasitoid species in Africa. The ecological impact of local extinction of S. calamistis caused by this highly effective transgenic event is therefore not expected to be great.  相似文献   

3.
Large‐scale field experiments on the Mediterranean corn borer, Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), were carried out in 2004–2006 on maize [Zea mays L. (Poaceae)] fields using (Z)‐11‐hexadecenyl trifluoromethyl ketone, an antagonist analog of the pheromone of this species, to evaluate a possible reduction of damage caused by this pest. The effect of the treatments on the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), a sympatric species, was also determined. Evaluation of the success of the experiments was assessed by counting (i) the number of males caught by pheromone traps in treated and untreated fields, (ii) the number of plants attacked by both insects in both plots, and (iii) the number of larvae present in infested plants in both fields. Effectiveness of the treatment was high for the second generation of the Mediterranean corn borer, the most harmful to the crop (86–90% reduction in the number of plants attacked and 67–98% reduction in the number of larvae per plant in treated fields in comparison to untreated fields), and moderate for the third generation (reduction of 41–71% and 33–77%, respectively). Treatments were also effective for the second generation of the European corn borer (61–75% reduction in the number of plants attacked, 58–78% reduction in the number of larvae found per plant) as well as for the third generation (69–97% and 70–98% reduction, respectively). By plotting the amount of the antagonist remaining on the dispensers after 40–45 days of exposure with time, the mean release rate of the compound was calculated to be 2.2%/day in 2004, 1.95%/day in 2005, and 2.1%/day in 2006, with 26% of the initial compound remaining after 20 days of experimentation. The emission rate appears to cover the flight of the most damaging second generation of both insects. Prospects of using trifluoromethyl ketones as new potential agents for pest control are also outlined.  相似文献   

4.
Selection pressure on bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), by cotton, Gossypium hirsutum (L.) (Malvaceae), that produces one or more Bacillus thuringiensis Berliner (Bt) proteins is reduced by plantings of non‐Bt refuge cotton that produce non‐selected individuals. However, the contributions of non‐Bt, non‐cotton crop hosts to the overall effective refuge for H. zea on Bt cotton have not been estimated. A 2‐year, season‐long study was conducted in five US cotton‐producing states to assess the spatial and temporal population dynamics and host use of H. zea. Helicoverpa zea larval estimates in commercial crop fields demonstrated that non‐cotton crop hosts, such as maize, Zea mays L. (Poaceae), grain sorghum, Sorghum bicolor (L.) Moench (Poaceae), peanut, Arachis hypogaea L. (Fabaceae), and soybean, Glycine max (L.) Merrill (Fabaceae), collectively support much larger larval populations than cotton throughout the season. Larval populations were almost entirely restricted to maize in the middle part of the season (June and portions of July), and were observed in non‐cotton crop hosts more frequently and typically in larger numbers than in cotton during the period when production would be expected in cotton (July and August). Numbers of H. zea larvae produced in replicated strip trials containing various crop hosts paralleled production estimates from commercial fields. In contrast, the number of H. zea adults captured in pheromone traps at interfaces of fields of Bt cotton and various crop hosts rarely varied among interfaces, except in instances where maize was highly attractive. With the exception of this early season influence of maize, moth numbers were not related to local larval production. These data demonstrate that H. zea adults move extensively from their natal host origins. Therefore, non‐cotton crop hosts, and even relatively distant hosts, contribute significantly to effective refuge for H. zea on Bt cotton. The results presented here demonstrate that substantial natural refuge is present for Bt‐resistance management of H. zea throughout the mid‐South and Southeast portions of the US cotton belt.  相似文献   

5.
Approximately 22 000 hectares (5% of the total maize growing area) of transgenic maize expressing the Cry1Ab toxin from Bacillus thuringiensis (Bt maize) have been planted annually in Spain since 1998. Changes in the susceptibility to Cry1Ab of Spanish populations of the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae), and the European corn borer (ECB), Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were assessed by annual monitoring on Bt maize fields. No increase in resistance was detected in the MCB populations from Ebro, Albacete, and Badajoz, nor in the ECB populations from Ebro and Badajoz during the period 1999–2002. The susceptibility of the MCB population from Madrid fluctuated from year to year, but a gradual trend towards higher levels of tolerance was not observed. Laboratory selection assays for eight generations yielded selected strains of MCB and ECB that were 21‐ and 10‐fold significantly more tolerant to Cry1Ab than the corresponding unselected strains, respectively. Nevertheless, none of the field‐collected or laboratory‐selected larvae were able to survive on Bt maize. Considering these data, no consistent shifts in susceptibility were found for Spanish populations of MCB nor ECB after 5 years of Bt maize cultivation, but systematic field monitoring needs to be continued.  相似文献   

6.
The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), is a dominant maize borer pest and a major target of Bacillus thuringiensis (Bt)‐maize in Louisiana and the Gulf Coast area of Texas (USA). Growth and development of D. saccharalis on non‐toxic diet, diet treated with three low concentrations (0.01, 0.05, and 0.1 μg g?1) of Cry1Ab toxin, and on non‐Bt maize plants were compared for five insect genotypes: a Bt‐susceptible strain (BT‐SS), a Cry1Ab‐resistant strain (BT‐RR), a back‐crossed and re‐selected resistant strain (BT‐R’R’), and two F1 progeny of the BT‐SS and BT‐R’R’ strains. Fitness of the five genotypes was examined by infesting neonates on diet with/without Cry1Ab toxin in the laboratory and on intact non‐Bt maize plants in the greenhouse. Biological parameters measured were neonate‐to‐pupa development time and pupation rate, larval survival, larval and pupal weight, and sex ratio. Larvae of BT‐SS and BT‐R’R’ on non‐toxic diet and non‐Bt maize plants grew normally and there were no significant differences between the two strains in all measured parameters, suggesting a lack‐of‐fitness cost of the Cry1Ab resistance in D. saccharalis. Except for the development time on non‐Bt diet, all other parameters on both non‐Bt diet and non‐Bt maize plants were similar among the five genotypes. Larval development of BT‐SS was significantly affected on diet treated with Cry1Ab toxin at 0.05 and 0.1 μg g?1, whereas the effect to BT‐RR and BT‐R’R’ was not significant. Pupal weight and sex ratio reared on Cry1Ab‐diet were similar and there were no significant differences among the five genotypes. Neonate‐to‐pupation rate decreased as Cry1Ab concentrations increased but the decrease was more significant for BT‐SS than for the other four genotypes. The lack‐of‐fitness costs of Bt resistance in D. saccharalis imply a greater challenge in managing Bt resistance for this maize borer species.  相似文献   

7.
Adult diamondback moths (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), inoculated with the fungus Zoophthora radicans, were released within a large field cage containing DBM‐infested potted broccoli plants. Larvae and pupae on exposed and caged control plants were examined on five occasions over the next 48 days for evidence of Z. radicans infection. Infected larvae were first detected on exposed plants 4 days after the initial release of adults, and after 48 days the infection level reached 79%. Aerially borne conidia were a factor in transmission of the fungus. Infection had no effect on possible losses of larval and adult cadavers due to scavengers in field crops. In a trial to measure the influence of infection on dispersal, twice as many non‐infected as infected males were recaptured in pheromone traps, although the difference in cumulative catch only became significant 3 days after release of the males. In a separate experiment, when adult moths were inoculated with Beauveria bassiana conidia and released into the field cage, DBM larvae collected from 37 of 96 plants sampled 4 days later subsequently died from B. bassiana infection. The distribution of plants from which the infected larvae were collected was random, but the distribution of infected larvae was clustered within the cage. These findings suggest that the auto‐dissemination of fungal pathogens may be a feasible strategy for DBM control, provided that epizootics can be established and maintained when DBM population densities are low.  相似文献   

8.
A novel F2 screening technique was developed for detecting resistance in sugarcane borer, Diatraea saccharalis (F.), to transgenic Bacillus thuringiensis (Bt)-maize expressing the Cry1Ab insecticidal protein. The F2 screening method involved (i) collecting larvae from maize fields; (ii) establishing two-parent families; (iii) screening F2 neonates for survival on Bt-maize leaf tissues; and (iv) confirming resistance on commercial Bt-maize plants. With the F2 screening method, 213 iso-line families of D. saccharalis were established from field collections in northeast Louisiana, USA and were screened for Bt resistance. One family was confirmed to carry a major Bt resistance allele(s). In a laboratory bioassay, larval mortality of the Bt-resistant D. saccharalis on Bt-maize leaf tissues was significantly lower than that of a Bt-susceptible strain. This Bt-resistant D. saccharalis population is the first corn stalk borer species that has completed larval development on commercial Bt-maize. The F2 screening protocol developed in this study could be modified for detecting Bt resistance alleles in other similar corn stalk borers, such as the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn borer, D. grandiosella Dyar.  相似文献   

9.
Abstract:  Dispersal of European corn borer, Ostrinia nubilalis Hübner was examined by release and recapture of the dye marked adults and by capture of the feral adults in and around the large 50 ha center pivot irrigated fields of Bacillus thuringiensis (Bt) maize. Pheromone and black light traps were used to catch the adults. In 1999, 15 094 marked males and 7993 marked females were released, and in 2001, 13 942 marked males and 9977 marked females were released. In 1999, maximum mean recapture beyond the release point was 1.95 and 1.67% for males and females, but in 2001, the recapture rate was 9.97 and 4.37% for males and females. Few males (3.8%) and females (2.07%) were recaptured in neighbourhood maize fields. An exponential decay function explained recapture of marked adults across the dispersal distance. More than 90% of marked adults were recaptured within 300 m of the release point. Large numbers of feral adults were captured throughout the study fields. Feral adult dispersal could be fitted to a linear model. Virgin females (20% marked and 8% feral) were captured throughout the study fields. The recapture of marked insects suggests that the dispersal was limited. However, capture of feral adults throughout Bt-maize fields indicate that the actual dispersal may be more extensive than indicated by recapture of marked adults. Potential refuge sources for the feral adults were 587–1387 m from the edge of the study fields. It is not clear if the dispersal recorded in this study is extensive enough to support the current resistance management strategy for corn borers. There appears to be some dispersal of corn borers from the non-transgenic 'refuge' fields into the transgenic fields that allows some genetic mixing of the two populations.  相似文献   

10.
We carried out a 6-year-field evaluation to assess potential hazards of growing Compa, a transgenic Bt maize variety based on the transformation event CG 00256-176. Two categories of hazards were investigated: the potential of the target corn borer Sesamia nonagrioides to evolve resistance to Bt maize and effects on non-target organisms. In order to address the first hazard, dispersal capacity of the corn borer was measured and our results indicated that larvae move to plants other than those onto which the female oviposited - even to plants in adjacent rows - in remarkable numbers and they do so mostly at a mature age, suggesting that mixing Bt and non-Bt seeds in the same field would not be a very useful deployment strategy to delay/prevent resistance. In addition, adults move among fields to mate and males may do so for up to 400 m. Three different aspects of potential non-target effects were investigated: sub-lethal effects on the target S. nonagrioides, effects on non-target maize pests, and effects on maize-dwelling predators. Larvae collected in Bt fields at later growth stages, in which event 176 Bt maize expresses Bt toxin at sub-lethal concentrations, had longer diapause and post-diapause development than larvae collected in non-Bt fields, a feature that might lead to a certain isolation between populations in both type of fields and accelerate Bt resistance evolution. Transgenic maize did not have a negative impact on non-target pests in the field; more aphids and leafhoppers but similar numbers of cutworms and wireworms were counted in Bt versus non-Bt fields; in any case differences in damage or yield were recorded. We observed no difference in the numbers of the most relevant predators in fields containing transgenic or no transgenic maize.  相似文献   

11.
The success of the current resistance management plan for transgenic maize, Zea mays L. (Poaceae), targeting the rootworm complex hinges upon high rates of mating between resistant and susceptible beetles. However, differences in the fitness of adult beetles could result in assortative mating, which could, in turn, change the rate of resistance evolution. Adult head capsule widths of naturally occurring populations of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were examined in a variety of refuge configurations. Beetles were classified into treatments based on the hybrid – non‐Bt refuge or Bt maize targeting larval rootworms (hereafter BtRW maize) – and location – proximity to other Bt‐RW or refuge plants – of the natal host plant. Treatments included the following: a refuge plant surrounded by other refuge plants, a refuge plant located near a BtRW plant, a BtRW plant surrounded by BtRW plants, and a BtRW plant located near a refuge plant. The mean head capsule width of males emerging from BtRW plants was significantly smaller than the mean head capsule width of males emerging from refuge plants. These results indicate that males emerging from BtRW maize plants may be exposed to sublethal doses of the Bt toxin as larvae. No differences were detected between females emerging from refuge plants compared with Bt‐RW plants. Overall mean head capsule width decreased as the season progressed, regardless of treatment. The diminished head capsule width of western corn rootworm males emerging from Bt‐RW maize may act to enhance resistance management, particularly in a seed mix refuge system.  相似文献   

12.
The sustainability of genetically engineered insecticidal Bacillus thuringiensis Berliner (Bt) maize, Zea mays L. (Poaceae), is threatened by the evolution of resistance by target pest species. Several Lepidoptera species have evolved resistance to Cry proteins expressed by Bt maize over the last decade, including the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae). The insect resistance management (IRM) strategy (i.e., the high‐dose/refuge strategy) deployed to delay resistance evolution is grounded on certain assumptions about the biology and ecology of a pest species, for example, the interactions between the insect pest and crop plants. Should these assumptions be violated, the evolution of resistance within pest populations will be rapid. This study evaluated the assumption that B. fusca adults and larvae select and colonize maize plants at random, and do not show any preference for either Bt or non‐Bt maize. Gravid female B. fusca moths of a resistant and susceptible population were subjected to two‐choice oviposition preference tests using stems of Bt and non‐Bt maize plants. Both the number of egg batches as well as the total number of eggs laid on each stem were recorded. The feeding preference of Bt‐resistant and susceptible neonate B. fusca larvae were evaluated in choice test bioassays with whorl leaf samples of specific maize cultivars. Although no differential oviposition preference was observed for either resistant or susceptible female moths, leaf damage ratings indicated that neonate larvae were able to detect Bt toxins and that they displayed feeding avoidance behaviour on Bt maize leaf samples.  相似文献   

13.
Abstract 1. When offered a choice, female diamondback moths (Plutella xylostella) oviposited more eggs on plants with non‐parasitised conspecific larvae than on plants with parasitised larvae. 2. The leaf area consumed by parasitised larvae was significantly lower than that by non‐parasitised larvae. However, this quantitative difference in larval damage did not explain the female’s ability to discriminate between plants with parasitised and non‐parasitised larvae, as females showed an equal oviposition preference for plants infested by higher or lower densities of non‐parasitised larvae. 3. Pupal weight and duration of the larval stage of P. xylostella were independent of whether larvae were reared on plants that were previously infested by either non‐parasitised or parasitised larvae. 4. The larval parasitoid Cotesia vestalis did not distinguish between plants infested by non‐parasitised larvae and plants infested by larvae that had already been parasitised by conspecific wasps. 5. Based on these data, it can be concluded that the moth oviposition preference for plants infested by non‐parasitised conspecifics relative to plants infested by parasitised conspecifics was not explained by plant quality or by the attractiveness of plants towards wasps. It is hypothesised that one of the reasons for this preference is avoidance of plants where a relatively high risk of parasitism is expected due to the emergence of parasitoids from the parasitised host larvae.  相似文献   

14.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae occasionally have been reported to survive at management threshold levels in fields of Bollgard II® cotton, Gossypium hirsutum L. (Malvaceae). The pattern and degree of larval survival is not easily predicted but depends on the ability of first instars to establish on host plants. Experiments were conducted with Bacillus thuringiensis Berliner (Bt)‐susceptible and Bt‐resistant larvae of H. armigera to understand how physiologically Bt‐susceptible H. armigera survive on Bt cotton plants, and examine how their first meal influences survival rates. In assays using cotton plant parts, both strains of larvae displayed similar tendencies to drop‐off specific plant parts of Bt and non‐Bt cotton. However, significantly more Bt‐susceptible larvae dropped off young leaves, mature leaves, and squares of Bt cotton compared to non‐Bt cotton plants. Egg cannibalism significantly improved the survival of Bt‐susceptible H. armigera larvae on Bt cotton plants. Larvae were more likely to eat live aged eggs, than newly laid or dead eggs. Survival significantly improved when larvae cannibalized eggs before feeding on Bt leaves. The behavior of Bt‐susceptible larvae with respect to drop‐off and egg cannibalism may help enhance their survival on Bt cotton plants.  相似文献   

15.
Infestation with Ostrinia nubilalis (Hb.), the European corn borer (ECB) can be detected by using different sampling techniques in the field and statistical models aimed to assess the development time of ECB larvae and crop damage. An appropriate monitoring for this polyphagous species to show a relationship between the kind of sampling or a model and the subsequent damage in a particular crop, is very difficult. Sex pheromone traps, generally, are also not reliable for monitoring ECB. The possibility of employing new types of traps baited with a sex pheromone and a maize kairomone, the phenylacetaldheyde (PAA) (multibaited traps) was investigated. In sweet corn, trapping experiments were conducted over a 2-year period with two kinds of cone traps (XLa and XLb) set up at the borders of fields (four replicates). ECB attacks of first and second generation larvae were evaluated in the corn ears as a percentage of damage and using a damage index (DI). A correlation was found between the number of females caught per trap and either the percentage of damaged ears (r = 0.73 for XLa; r = 0.65 for XLb) and the DI (r = 70 for XLa; r = 0.60 for XLb). Conversely, the number of males caught per trap was not correlated with ECB larval damage. A linear model of multiple correlation fitted to the data of simultaneous captures of males and females showed that the coefficients were not higher than simple correlation. The correlation coefficients obtained by fitting a curvilinear response surface were higher (r = 0.81 for XLa and r = 0.84 for XLb, respectively, related to percentage of damaged ears; r = 0.79 for XLa and r = 0.76 for XLb, respectively, related to DI) thus indicating that the simultaneous counting of males and females in cone traps can be an efficient and simple monitoring tool.  相似文献   

16.
Laboratory bioassays were conducted to evaluate the response of first instar larvae of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Danaidae), a non‐target species, to pollen from corn, Zea mays L. (Commelinales: Poaceae), from two new corn hybrids genetically modified to express different types of insecticidal proteins derived from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). One hybrid expresses both Cry1Ab and Cry2Ab2 proteins (MON 810 × MON 84006), active against lepidopteran pests, and the other expresses Cry3Bb1 protein (MON 863), targeted against coleopteran pests. First instar larvae were placed on milkweed leaves (Asclepias syriaca L.) (Gentianales: Asclepiadaceae) dusted with doses of either Bt pollen or its nonexpressing (isoline) pollen counterpart ranging from 50 to 3200 grains cm?2 of milkweed leaves, or no pollen at all. Larvae were exposed to pollen for 4 days, then moved to pollen‐free leaves and observed for another 6 days. Survival was observed after 2, 4, and 10 days. Weight gain was estimated after 4 and 10 days, leaf consumption after 2 and 4 days, and larval development after 10 days. Exposure to pollen of the Cry1Ab/Cry2Ab2‐Bt expressing hybrid reduced larval survival approximately 7.5–23.5% at the dose ranges tested relative to a no pollen control. Larval weight gain and consumption were reduced for larvae exposed to pollen of this hybrid and a small minority of larvae (3.1%) never developed past the third instar after 10 days of observation. Exposure to pollen of the Cry3Bb1‐Bt expressing hybrid had no negative effects on larval mortality, weight gain, consumption, or development relative to the consumption of Bt‐free corn pollen. The relevance of these findings to the risk that these Bt corn hybrids pose to monarch populations is discussed.  相似文献   

17.
To examine how resistance to Bacillus thuringiensis (Bt) toxins influences movement and survival of European corn borer (Ostrinia nubilalis [Hübner]) neonates, the responses of Cry1Ab-resistant , -susceptible, and hybrid (F1) larvae were examined using two different techniques. First, using an automated video-tracking system, aspects of O. nubilalis movement were quantified in the presence of artificial diet incorporating 50% non-Bt or insect-resistant Cry1Ab maize tissue. Second, O. nubilalis dispersal and survival were measured 48–72 h after hatching on a Cry1Ab maize plant surrounded by two non-Bt maize plants. Video tracking indicated the presence of Cry1Ab tissue increased the total distance moved (m), time moving (%), and time away from the diet (%) for O. nubilalis while decreasing meander (degrees/cm). However, resistant larvae showed reduced movement and increased meander (≈localized searching) relative to susceptible or hybrid larvae on diet incorporating Cry1Ab tissue. Conversely, when placed onto Cry1Ab maize plants, resistant larvae were more likely than susceptible O. nubilalis to disperse onto adjacent non-Bt plants. The difference in on-plant dispersal seems to reflect greater survival after toxin exposure for resistant larvae rather than increased activity. These results suggest that simplified ‘Petri dish’ tests may not be predictive of larval movement among non-Bt and insect-resistant Bt maize plants. Because models of O. nubilalis resistance evolution incorporate various movement and survival parameters, improved data for on-plant behavior and survival of Bt- resistant , -susceptible, and hybrid larvae should help preserve the efficacy of transgenic insect-resistant maize.  相似文献   

18.
As a part of a risk assessment procedure, the impact of Bt maize expressing Cry1Ab toxin on the thrips Frankliniella tenuicornis (Uzel) (Thysanoptera: Thripidae) was investigated, and the potential risks for predators feeding on thrips on Bt maize were evaluated. The effects of Bt maize on F. tenuicornis were assessed by measuring life‐table parameters when reared on Bt and non‐Bt maize. The content of Cry1Ab toxin in different stages of F. tenuicornis reared on Bt maize and the persistence of the toxin in adults where determined in order to evaluate the possible exposure of predators when feeding on thrips. In addition, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) was used as a model predator to assess how the behaviour of prey and predator may influence the exposure of a natural enemy to the Bt toxin. Life‐table parameter results showed that F. tenuicornis was not affected when it was reared on Bt maize. This indicates that the potential for prey quality‐mediated effects on predators is low. Bt content was highest in thrips larvae and adults, and negligible in the non‐feeding prepupal and pupal stages. The persistence of the Cry1Ab toxin in adult F. tenuicornis was short, resulting in a decrease of 97% within the first 24 h. Predation success by young C. carnea larvae varied among the thrips stages, indicating that exposure of predators to Bt toxin can additionally depend on the prey stage. When combining the current knowledge of the susceptibility of major thrips predators with our findings showing no potential for prey quality‐mediated effects, relatively low toxin content in thrips as well as short persistence, it can be concluded that the risks for predators when feeding on thrips in or next to Bt maize fields are negligible.  相似文献   

19.
The ability of non‐crop plants to support complete development of insect pests is an important factor for determining the impact of those plants on resistance management programs for transgenic crops. We assessed the effect of one physical factor, plant stem diameter, on the ability of plants to support full development of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), the target pest of transgenic Bt‐corn. In the field, European corn borer larvae were significantly more likely to tunnel and survive in plants with larger stem diameters. Larvae were 40× more likely to survive on corn, the largest plant tested, compared to many of the smaller plants. In the laboratory, larvae were more likely to survive in and less likely to abandon the largest diet‐filled artificial stems that varied only in stem diameter. In conditions simulating those that an ECB larvae would encounter upon abandoning a host, larvae survived up to three weeks and were able to locate corn as a new host with a significantly higher frequency than would be expected if they were foraging randomly. These results indicate that the probability of ECB larval survival to maturity on a plant other than corn is relatively low and thus these smaller stemmed non‐corn plants may not make a substantial contribution to the pool of susceptible adults. Conversely, since more mature larvae are not as susceptible as neonates, any larvae that partially develop on non‐corn plants and subsequently colonize Bt‐corn may not be exposed to a lethal dose of the toxin. Since some proportion of the individuals that survive could be partially resistant heterozygotes the presence of non‐corn host plants could facilitate the development of resistant ECB populations.  相似文献   

20.
Many plants grown in soils amended with silicon (Si) display increased levels of resistance to attack by insect herbivores. This study aimed to determine if Si treatment impeded Eldana saccharina Walker (Lepidoptera: Pyralidae) stalk penetration and subsequent damage, as well as borer mass gain, on the node and internode of a susceptible (N11) and a resistant (N33) sugarcane cultivar. Sugarcane [Saccharum spp. (Poaceae)] cultivars were grown in a pot trial in Si‐deficient river sand, with (Si+) and without (Si–) calcium silicate. Sugarcane was infested with 2‐week‐old E. saccharina larvae and harvested at four times, 24, 48, 72, and 96 h after infestation. Silicon‐treated plants showed significant increases in Si content compared to controls, and the external rind was significantly harder for Si+ cane than Si– cane. Silicon treatment significantly decreased borer penetration, stalk damage, and larval mass gain. The results are consistent with the hypothesis that Si contributes to sugarcane stalk borer resistance by impeding larval penetration. Silicon appears to contribute to the suppression of E. saccharina directly through reduced larval growth and feeding damage to the crop, and indirectly by delaying stalk penetration, resulting most likely in increased exposure time of young larvae to natural enemies, adverse climatic factors, or control measures that target young larvae (e.g., insecticides).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号