首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background

The approved immunomodulatory agents for the treatment of multiple sclerosis (MS) are only partially effective. It is thought that the combination of immunomodulatory and neuroprotective strategies is necessary to prevent or reverse disease progression. Irradiation with far red/near infrared light, termed photobiomodulation, is a therapeutic approach for inflammatory and neurodegenerative diseases. Data suggests that near-infrared light functions through neuroprotective and anti-inflammatory mechanisms. We sought to investigate the clinical effect of photobiomodulation in the Experimental Autoimmune Encephalomyelitis (EAE) model of multiple sclerosis.

Methodology/Principal Findings

The clinical effect of photobiomodulation induced by 670 nm light was investigated in the C57BL/6 mouse model of EAE. Disease was induced with myelin oligodendrocyte glycoprotein (MOG) according to standard laboratory protocol. Mice received 670 nm light or no light treatment (sham) administered as suppression and treatment protocols. 670 nm light reduced disease severity with both protocols compared to sham treated mice. Disease amelioration was associated with down-regulation of proinflammatory cytokines (interferon-γ, tumor necrosis factor-α) and up-regulation of anti-inflammatory cytokines (IL-4, IL-10) in vitro and in vivo.

Conclusion/Significance

These studies document the therapeutic potential of photobiomodulation with 670 nm light in the EAE model, in part through modulation of the immune response.  相似文献   

2.
There is convincing evidence that nitric oxide (NO), cGMP and cGMP-dependent protein kinase I (PKG-I) are involved in the development of hyperalgesia in response to noxious stimuli. However, downstream target proteins contributing to nociception have not been completely identified so far. Several reports indicate a role of the NO/cGMP/PKG cascade in the regulation of neurite outgrowth which is suggested to be involved in specific mechanisms of nociception. Since neurite outgrowth is strongly dependent on modulation of cytoskeleton proteins we were interested in the impact of PKG-I activation on the actin cytoskeleton and its role in inflammatory hyperalgesia. Therefore we investigated the actin-destabilising protein cofilin and its NO-dependent effects in vitro in primary neuronal cultures as well as in vivo in the zymosan-induced paw inflammation model in rats. In primary neurons from rats, treatment with the PKG-I activator 8-Br-cGMP induced a time-dependent phosphorylation of cofilin and significantly increased neurite outgrowth. Further functional analysis revealed that the underlying signal transduction pathways involve activation of the Rho-GTPases RhoA, Rac1 and Cdc42 and their corresponding downstream targets Rho-kinase (ROCK) and p21-activated kinase (PAK). In vivo, treatment of rats with the NO-synthase inhibitor l-NAME and the ROCK-inhibitor Y-27632, respectively, led to a significant decrease of cofilin phosphorylation in the spinal cord and resulted in antinociceptive effects in a model of inflammatory hyperalgesia. Our results suggest that cofilin represents a downstream target of NO/cGMP/PKG signal transduction in neurons thus indicating that it is involved in NO-mediated nociception.  相似文献   

3.
BackgroundPublished information on snakebite is rare in Bhutan although remarkably higher number of snakebites and associated deaths are reported from other South Asian countries.Aims and methodologyStructured questionnaire was used to collect knowledge of health workers in snakebite management and health seeking behavior of snakebite victims as observed by health workers. Study was conducted in purposively sampled 10 Dzongkhags (district level administrative units) with higher incidence of snakebites.ResultHeath workers scored 27–91% (with an average of 63%, SD = 14) for 52 questions related to snake identification and snakebite management. Among 118 health workers interviewed, 23% had adequate knowledge on snakes and snakebite management while 77% had inadequate knowledge. Among 32 Doctors, 63% of them scored above or equal to 75%. Health workers from Sarpang scored higher (76%, SD = 11) than those from other Dzongkhags. Snakebite victim''s visit to local (traditional) healers prior to seeking medical help from hospital was observed by 75 (63%) health workers. Fifty one percent of health workers observed patients treated with local methods such as the use of black stone called Jhhar Mauro (believed to absorb snake venom), application of honey, rubbing of green herbal paste made up of Khenpa Shing (Artemisia myriantha Wallich ex Besser var. paleocephala [Pamp] Ling) and consumption of fluid made up of Neem leaf (Azadirachta indica Juss). Use of tight tourniquet as a first aid to snakebite was observed by 80% of the health workers.ConclusionHealth workers lack confidence in snakebite management. Snakebite victims are likely to suffer from harmful local practices and traditional beliefs on local treatment practices. Empowering health workers with adequate knowledge on snakebite management and making locals aware in pre-hospital care of snakebites are needed to improve the pre- and in-hospital management of snakebite in Bhutan.  相似文献   

4.
The molecular mechanisms determining magnitude and duration of inflammatory pain are still unclear. We assessed the contribution of G protein–coupled receptor kinase (GRK)-6 to inflammatory hyperalgesia in mice. We showed that GRK6 is a critical regulator of severity and duration of cytokine-induced hyperalgesia. In GRK6−/− mice, a significantly lower dose (100 times lower) of intraplantar interleukin (IL)-1β was sufficient to induce hyperalgesia compared with wild-type (WT) mice. In addition, IL-1β hyperalgesia lasted much longer in GRK6−/− mice than in WT mice (8 d in GRK6−/− versus 6 h in WT mice). Tumor necrosis factor (TNF)-α–induced hyperalgesia was also enhanced and prolonged in GRK6−/− mice. In vitro, IL-1β–induced p38 phosphorylation in GRK6−/− dorsal root ganglion (DRG) neurons was increased compared with WT neurons. In contrast, IL-1β only induced activation of the phosphatidylinositol (PI) 3-kinase/Akt pathway in WT neurons, but not in GRK6−/− neurons. In vivo, p38 inhibition attenuated IL-1β– and TNF-α–induced hyperalgesia in both genotypes. Notably, however, whereas PI 3-kinase inhibition enhanced and prolonged hyperalgesia in WT mice, it did not have any effect in GRK6-deficient mice. The capacity of GRK6 to regulate pain responses was also apparent in carrageenan-induced hyperalgesia, since thermal and mechanical hypersensitivity was significantly prolonged in GRK6−/− mice. Finally, GRK6 expression was reduced in DRGs of mice with chronic neuropathic or inflammatory pain. Collectively, these findings underline the potential role of GRK6 in pathological pain. We propose the novel concept that GRK6 acts as a kinase that constrains neuronal responsiveness to IL-1β and TNF-α and cytokine-induced hyperalgesia via biased cytokine-induced p38 and PI 3-kinase/Akt activation.  相似文献   

5.
BackgroundInflammation-mediated lung injury is a major cause of health problems in many countries and has been the leading cause of morbidity/mortality in intensive care units. In the current COVID-19 pandemic, the majority of the patients experienced serious pneumonia resulting from inflammation (Acute respiratory distress syndrome/ARDS). Pathogenic infections cause cytokine release syndrome (CRS) by hyperactivation of immune cells, which in turn release excessive cytokines causing ARDS. Currently, there are no standard therapies for viral, bacterial or pathogen-mediated CRS.PurposeThis study aimed to investigate and validate the protective effects of Dehydrozingerone (DHZ) against LPS induced lung cell injury by in-vitro and in-vivo models and to gain insights into the molecular mechanisms that mediate these therapeutic effects.MethodsThe therapeutic activity of DHZ was determined in in-vitro models by pre-treating the cells with DHZ and exposed to LPS to stimulate the inflammatory cascade of events. We analysed the effect of DHZ on LPS induced inflammatory cytokines, chemokines and cell damage markers expression/levels using various cell lines. We performed gene expression, ELISA, and western blot analysis to elucidate the effect of DHZ on inflammation and its modulation of MAPK and NF-κB pathways. Further, the prophylactic and therapeutic effect of DHZ was evaluated against the LPS induced ARDS model in rats.ResultsDHZ significantly (p < 0.01) attenuated the LPS induced ROS, inflammatory cytokine, chemokine gene expression and protein release in macrophages. Similarly, DHZ treatment protected the lung epithelial and endothelial cells by mitigating the LPS induced inflammatory events in a dose-dependent manner. In vivo analysis showed that DHZ treatment significantly (p < 0.001) mitigated the LPS induced ARDS pathophysiology of increase in the inflammatory cells in BALF, inflammatory cytokine and chemokines in lung tissues. LPS stimulated neutrophil-mediated events, apoptosis, alveolar wall thickening and alveolar inflammation were profoundly reduced by DHZ treatment in a rat model.ConclusionThis study demonstrates for the first time that DHZ has the potential to ameliorate LPS induced ARDS by inhibiting cytokine storm and oxidative through modulating the MAPK and NF-κB pathways. This data provides pre-clinical support to develop DHZ as a potential therapeutic agent against ARDS.  相似文献   

6.
BackgroundSnakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells.MethodologyC2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation.ResultsIn non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom.ConclusionLLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory effect of ATP synthesis may be suggested as a possible mechanism mediating cytoprotection observed under laser irradiation.  相似文献   

7.
So JS  Song MK  Kwon HK  Lee CG  Chae CS  Sahoo A  Jash A  Lee SH  Park ZY  Im SH 《Life sciences》2011,88(7-8):358-366
AimsWe previously reported that Lactobacillus casei (L. casei) has beneficial effects in experimental rheumatoid arthritis (RA) by suppressing inflammatory immune responses. The major purpose of this study was to evaluate therapeutic effects of L. casei on pathological responses in experimental rodent model of osteoarthritis (OA).Main methodsExperimental OA was induced by intra-articular injection of monosodium iodoacetate (MIA) in Wistar rats. L. casei alone or together with type II collagen (CII) and glucosamine (Gln) was orally administered into OA rats. The pathophysiological aspects of OA were investigated by analyzing mechanical hyperalgesia and histology of articular tissues. Expression of inflammatory molecules was analyzed in CD4+ T cells, synovial fibroblasts, and chondrocytes by quantitative real-time PCR.Key findingsOral administration of L. casei together with CII and Gln more effectively reduced pain, cartilage destruction, and lymphocyte infiltration than the treatment of Gln or L. casei alone. This co-administration also decreased expression of various pro-inflammatory cytokines (interleukin-1β (IL-1β), IL-2, IL-6, IL-12, IL-17, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) and matrix metalloproteinases (MMP1, MMP3, and MMP13), while up-regulating anti-inflammatory cytokines (IL-4 and IL-10). These results are concomitant with reduced translocation of NF-κB into the nucleus and increased expression of the tissue inhibitor of MMP1 (TIMP1) and CII in chondrocytes.SignificanceOur study provides evidence that L. casei could act as a potent nutraceutical modulator for OA treatment by reducing pain, inflammatory responses, and articular cartilage degradation.  相似文献   

8.
BackgroundThe treatment for snakebites is early administration of antivenom, which can be highly effective in inhibiting the systemic effects of snake venoms, but is less effective in the treatment of extra-circulatory and local effects. To complement standard-of-care treatments such as antibody-based antivenoms, natural and synthetic small molecules have been proposed for the inhibition of key venom components such as phospholipase A2 (PLA2) and PLA2-like toxins. Varespladib (compound LY315920) is a synthetic molecule developed and clinically tested aiming to block inflammatory cascades of several diseases associated with high PLA2s. Recent studies have demonstrated this molecule is able to potently inhibit snake venom catalytic PLA2 and PLA2-like toxins.MethodsIn vivo and in vitro techniques were used to evaluate the inhibitory effect of varespladib against MjTX-I. X-ray crystallography was used to reveal details of the interaction between these molecules. A new methodology that combines crystallography, mass spectroscopy and phylogenetic data was used to review its primary sequence.ResultsVarespladib was able to inhibit the myotoxic and cytotoxic effects of MjTX-I. Structural analysis revealed a particular inhibitory mechanism of MjTX-I when compared to other PLA2-like myotoxin, presenting an oligomeric-independent function.ConclusionResults suggest the effectiveness of varespladib for the inhibition of MjTX-I, in similarity with other PLA2 and PLA2-like toxins.General significanceVarespladib appears to be a promissory molecule in the treatment of local effects led by PLA2 and PLA2-like toxins (oligomeric dependent and independent), indicating that this is a multifunctional or broadly specific inhibitor for different toxins within this superfamily.  相似文献   

9.
BackgroundCurcumin is a naturally occurring polyphenol found in Curcuma longa with multiple therapeutic properties, such as anti-inflammatory, wound healing and anti-cancer effects. Curcuma longa is also used as a galactagogue to improve milk production during lactation.PurposeTo assess curcumin could have therapeutic potential for breastfeeding mothers, we investigated whether and how curcumin influences milk production in lactating mammary epithelial cells (MECs) at the cellular and molecular levels.MethodsWe prepared a lactating MEC culture model that produced milk components and formed less-permeable tight junctions (TJs) to investigate the molecular mechanism of curcumin on milk production, TJs, and inflammation in vitro.ResultsCurcumin downregulated milk production in lactation MECs concurrently with inactivation of lactogenesis-relating signaling (STAT5 and glucocorticoid receptor). The maintenance of a less-permeable TJ barrier was also confirmed, although the TJ protein claudin-4 increased. Curcumin inactivated NFκB and STAT3 signaling, which are closely involved in inflammatory responses in weaning and mastitis mammary glands. The expression levels of IL-1β and TNF-α were also decreased by curcumin treatment. Furthermore, curcumin blocked activation of inflammatory signaling by lipopolysaccharide treatment in MECs, similar to those in MECs that were treated with diclofenac sodium. The drastic phosphorylation of ERK was induced by curcumin treatment in the absence of EGF. U0126, an inhibitor of ERK phosphorylation, attenuated the adverse effects of curcumin on lactating MECs.ConclusionThe results of the present study suggests that curcumin downregulates milk production via inactivation of STAT5 and GR signaling with concurrent suppression of inflammatory responses via STAT3 and NFκB signaling in MECs. These findings provide new insights into the role of curcumin as a mild suppressor of milk production without inflammatory damages in breastfeeding mothers.  相似文献   

10.
The present study investigated the effects of the ethanolic extract (ESa), fractions, and compounds isolated from Sinningia aggregata in male Swiss mice on carrageenan-induced paw edema, neutrophil migration, mechanical hyperalgesia, formalin-induced nociception, and lipopolysaccharide-induced fever. The ESa did not alter edema, neutrophil migration, or fever at any of the doses tested. However, the ESa reduced phase II of formalin-induced nociception and carrageenan-induced mechanical hyperalgesia. The petroleum ether (PE) and ethyl acetate (EA) fractions and aggregatin D (AgD; isolated from the EA fraction) reduced formalin-induced nociception. Anthraquinones from the PE fraction were ineffective. AgD also inhibited carrageenan-induced mechanical hyperalgesia. Neither the ESa nor AgD altered thermal nociception or motor performance. Local administration of AgD also reduced hyperalgesia induced by carrageenan, bradykinin, tumor necrosis factor-α, interleukin-1β, cytokine-induced neutrophil chemoattractant, prostaglandin E2, and dopamine but not hyperalgesia induced by forskolin or dibutyryl cyclic adenosine monophosphate. The positive control dipyrone reduced the response induced by all of the stimuli. Additionally, glibenclamide abolished the analgesic effect of dipyrone but not the one induced by AgD. AgD did not change lipopolysaccharide-induced nitric oxide production by macrophages or the nociception induced by capsaicin, cinnamaldehyde, acidified saline, or menthol. These results suggest that the ESa has important antinociceptive activity, and this activity results at least partially from the presence of AgD. AgD reduced mechanical hyperalgesia induced by several inflammatory mediators through mechanisms that are different from classic analgesic drugs.  相似文献   

11.
The antinociceptive effects of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were investigated on animal paw licking responses and thermal hyperalgesia induced by glutamate receptor agonists including glutamate, N-methyl-D-aspartate (NMDA), and metabotropic glutamate 5 receptor (mGluR5) activator (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as inflammatory mediators such as substance P and prostaglandin E2 (PGE2) in mice. The actions of honokiol and magnolol on glutamate-induced c-Fos expression in the spinal cord dorsal horn were also examined. Our data showed that honokiol and magnolol blocked glutamate-, substance P- and PGE2-induced inflammatory pain with similar potency and efficacy. Consistently, honokiol and magnolol significantly decreased glutamate-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol was more selective than magnolol for inhibition of NMDA-induced licking behavioral and thermal hyperalgesia. In contrast, magnolol was more potent to block CHPG-mediated thermal hyperalgesia. These results demonstrate that honokiol and magnolol effectively decreased the inflammatory pain. Furthermore, their different potency on inhibition of nociception provoked by NMDA receptor and mGluR5 activation should be considered.  相似文献   

12.
13.
Knee osteoarthritis (OA) is a chronic disease that causes pain and gradual degeneration of the articular cartilage. In this study, MIA‐induced OA knee model was used in rats to test the effects of the photobiomodulation therapy (PBM). We analyzed the inflammatory process (pain and cytokine levels), and its influence on the oxidative stress and antioxidant capacity. Knee OA was induced by monosodium iodoacetate (MIA) intra‐articular injection (1.5 mg/50 μL) and the rats were treated with eight sessions of PBM 3 days/week (904 nm, 6 or 18 J/cm2). For each animal, mechanical and cold hyperalgesia and spontaneous pain were evaluated; biological analyses were performed in blood serum, intra‐articular lavage, knee structures, spinal cord and brainstem. Cytokine assays were performed in knee, spinal cord and brainstem samples. The effects of the 18 J/cm2 dose of PBM were promising in reducing pain and neutrophil activity in knee samples, together with reducing oxidative stress damage in blood serum and spinal cord samples. PBM improved the antioxidant capacity in blood serum and brainstem, and decreased the knee pro‐inflammatory cytokine levels. Our study demonstrated that PBM decreased oxidative damage, inflammation and pain. Therefore, this therapy could be an important tool in the treatment of knee OA.  相似文献   

14.
Introduction: Acute pancreatitis (AP) may be severe and cause hospitalization or death, and the available treatment is insufficient to control pancreatic inflammation and pain. Rutin is a natural flavonoid with the potential to treat AP via anti-inflammatory, antinociceptive, and antioxidant activities.

Aim: This study investigated the beneficial effects of rutin on experimental AP induced by l-arginine administration in mice.

Methods: The l-arginine-induced AP model was used in Swiss mice (n?=?6–8). Mice submitted to AP induction were treated with rutin (37.5, 75, or 150?mg kg?1, p.o.) or vehicle (saline) after 24, 36, 48, and 60?h of AP induction. Abdominal hyperalgesia, serum enzymes, interleukin (IL)-6 levels, pancreatic inflammatory parameters, malondialdehyde (MDA) levels, antioxidant enzyme activities, and 3-nitrotyrosine contents were measured 72?h after induction.

Results: Mice submitted to l-arginine injections developed abdominal hyperalgesia and increased serum amylase, lipase, C-reactive protein and IL-6 concentrations; and increased pancreatic myeloperoxidase activity, edema index, MDA, and 3-nitrotyrosine contents. A marked decrease in catalase activity was observed in the pancreas without alterations of superoxide dismutase (SOD) activity compared with the control group. Rutin treatment significantly impaired all the parameters that were altered by AP induction, but increased catalase and SOD activities in the pancreas compared with the vehicle-treated group.

Conclusion: Rutin treatment exerted a protective effect on l-arginine-induced AP by mechanisms involving the reduction of oxidative stress, which suggests that this flavonoid has a potential for future approaches designed for the management of AP.  相似文献   

15.
BackgroundDespite their differences in physicochemical properties, both uranium (U) and fluoride (F) are nephrotoxicants at high doses but their adverse effects at low doses are still the subject of debate. METHODS: This study aims to improve the knowledge of the biological mechanisms involved through an adaptive response model of C57BL/6 J mice chronically exposed to low priming doses of U (0, 10, 20 and 40 mg/L) or F (0, 15, 30 and 50 mg/L) and then challenged with acute exposure of 5 mg/kg U or 7.5 mg/kg NaF.ResultsWe showed that an adaptive response occurred with priming exposures to 20 mg/L U and 50 mg/L F, with decreased levels of the biomarkers KIM-1 and CLU compared to those in animals that received the challenge dose only (positive control). The adaptive mechanisms involved a decrease in caspase 3/7 activities in animals exposed to 20 mg/L U and a decrease in in situ VCAM expression in mice exposed to 50 mg/L F. However, autophagy and the UPR were induced independently of priming exposure to U or F and could not be identified as adaptive mechanisms to U or F.ConclusionTaken together, these results allow us to identify renal adaptive responses to U and F at doses of 20 and 50 mg/L, probably through decrease apoptosis and inflammatory cell recruitment.  相似文献   

16.
Cyclin-dependent kinase 5 is a proline-directed serine/threonine kinase and its activity participates in the regulation of nociceptive signaling. Like binding with the activators (P35 or P25), the phosphorylation of Cdk5 plays a critical role in Cdk5 activation. However, it is still unclear whether Cdk5 phosphorylation (p-Cdk5) contributes to pain hyperalgesia. The aim of our current study was to identify the roles of p-Cdk5 and its upstream regulator in response to peripheral inflammation. Complete Freund''s adjuvant (CFA) injection induced acute peripheral inflammation and heat hyperalgesia, which was accompanied by sustained increases in phospho-ERK1/2 (p-ERK1/2) and phospho-Cdk5S159 (p-Cdk5S159) in the spinal cord dorsal horn (SCDH). CFA-induced p-ERK primarily colocalized with p-Cdk5S159 in superficial dorsal horn neurons. Levels in p-ERK and p-Cdk5 were also increased in the 2nd phase of hyperalgesia induced by formalin injection, which can produce acute and tonic inflammatory pain. MAP kinase kinase inhibitor U0126 intrathecal delivery significantly suppressed the elevation of p-Cdk5S159, Cdk5 activity and pain response behavior (Heat hyperalgesia, Spontaneous flinches) induced by CFA or formalin injection. Cdk5 inhibitor roscovitine intrathecal administration also suppressed CFA-induced heat hyperalgesia and Cdk5 phosphorylation, but did not attenuate ERK activation. All these findings suggested that p-Cdk5S159 regulated by ERK pathway activity may be a critical mechanism involved in the activation of Cdk5 in nociceptive spinal neurons contributes to peripheral inflammatory pain hypersensitivity.  相似文献   

17.
Recent research suggests a role for ghrelin in the modulation of inflammatory disorders. However, the type of ghrelin receptor (GHS-R) involved in both the anti-inflammatory and anti-hyperalgesic actions of ghrelin remains to be characterized. In this study, we examined whether the inhibitory effect of ghrelin in the development of hyperalgesia and edema induced by intraplantar carrageenan administration depends on an interaction with GHS-R1a. Both central (1 nmol/rat, i.c.v.) and peripheral (40 nmol/kg, i.p.) administration of the selective GHS-R1a agonist EP1572 had no effect on carrageenan-induced hyperalgesia measured by Randall–Selitto test and paw edema. Furthermore, pre-treatment with the selective GHS-R1a antagonist, d-lys3-GHRP-6 (3 nmol/rat, i.c.v.) failed to prevent the anti-hyperalgesic and anti-inflammatory effects exerted by central ghrelin administration (1 nmol/rat), thus indicating that the type 1a GHS-R is not involved in these peptide activities. Accordingly, both central (1 and 2 nmol/rat, i.c.v.) and peripheral (40 and 80 nmol/kg, i.p.) administration of desacyl-ghrelin (DAG), which did not bind GHS-R1a, induced a significant reduction of the hyperalgesic and edematous activities of carrageenan. In conclusion, we have shown for the first time that DAG shares with ghrelin an inhibitory role in the development of hyperalgesia, as well as the paw edema induced by carrageenan and that a ghrelin receptor different from type 1a is involved in the anti-inflammatory activities of the peptide.  相似文献   

18.
19.
BackgroundChagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease.Methodology/Principal findingsC57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 μg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 μg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue.Conclusions/SignificanceAT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.  相似文献   

20.
BackgroundCobalt is an important metal cofactor of many living cells. However, excessive cobalt is toxic and can cause cell death and even several diseases in humans. Saccharomyces cerevisiae is a useful tool for studying metal homeostasis and many of the genes and pathways are highly conserved in higher eukaryotes including humans.MethodsThe intracellular cobalt and reactive oxygen species (ROS) levels were measured by an atomic absorption spectrometer and DHE staining method, respectively. The expression of genes involved in scavenging oxidative stress was tested by qPCR method, while the expression of UPRE-lacZ report gene was analyzed via β-galactosidase activity assay.ResultsUsing a genome-scale genetic screen, 153 cobalt-sensitive and 37 cobalt-tolerant gene deletion mutants were identified from Saccharomyces cerevisiae. We showed that 101 of the cobalt-sensitive mutants accumulated higher intracellular cobalt compared to wild-type. The intracellular ROS levels in 112 of the mutants were induced by cobalt, which might be caused by the decreased expression of genes involved in scavenging oxidative stress in response to cobalt. Moreover, more than one-third of the cobalt-sensitive mutants were also sensitive to tunicamycin, and cobalt stress might induce the unfolded protein response (UPR) through serine/threonine kinase and endoribonuclease Ire1.ConclusionsThis study reinforced the fact that cobalt toxicity might be due to the high intracellular cobalt and ROS levels, and the endoplasmic reticulum stress responses induced by cobalt.General significanceElucidating the toxicity mechanisms of cobalt stress response will help reveal new routes for the treatment of the diseases induced by cobalt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号