首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Single K+-selective channels were studied in excised inside-out membrane patches from dissociated mouse toe muscle fibers. Channels of 74 pS conductance in symmetrical 160mm KCl solutions were blocked reversibly by 10 m internal ATP and thus identified as ATP-sensitive K+ channels. The channels were also blocked reversibly bymm concentrations of internal adenosine, adenine and thymine, but not by cytosine and uracil. The efficacy of the reversible channel blockers was higher when they were present in internal NaCl instead of KCl solutions. An irreversible inhibition of ATP-sensitive K+ channels was observed after application of several sulphydryl-modifying substances in the internal solution: 0.5mm chloramine-T, 50mm hydrogen peroxide or 2mm n-ethylmaleimide (NEM). Largeconductance Ca-activated K+ channels were not affected by these reagents. The presence of 1mm internal ATP prevents the irreversible inhibition of ATP-sensitive K+ channels by NEM. The results suggest that internal Na+ ions increase the affinity of the ATP-sensitive K+ channel to ATP and to other reversible channel blockers and that a functionally important SH-group is located at or near the ATP-binding site.  相似文献   

2.
Summary Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attachedpatch measurements revealed two types of high conductance (100–250 pS) channels, which rapidly activated upon 50–100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3mm) or high K+ (143mm) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20–200 msec (depending on the stimulus) upon depolarizing voltage steps from <–60 mV to >–30 mV. It inactivates almost completely with a time constant of 2–3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1–2 sec) followed by a slow phase (>20 sec). The second whole-cell conductance activates at positive membrane potentials of >+50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

3.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   

4.
Summary K+ channels in inside-out patches from hamster insulin tumor (HIT) cells were studied using the patch-clamp technique. HIT cells provide a convenient system for the study of ion channels and insulin secretion. They are easy to culture, form gigaohm seals readily and secrete insulin in response to glucose. The properties of the cells changed with the passage number. For cell passage numbers 48 to 56, five different K+-selective channels ranging from 15 to 211 pS in symmetrical 140mm KCl solutions were distinguished. The channels were characterized by the following features: a channel with a conductance (in symmetrical 140mm KCl solutions) of 210 pS that was activated by noncyclic purine nucleotides and closed by H+ ions (pH=6.8); a 211 pS channel that was Ca2+-activated and voltage dependent; a 185 pS channel that was blocked by TEA but was insensitive to quinine or nucleotides; a 130 pS channel that was activated by membrane hyperpolarization; and a small conductance (15 pS) channel that was not obviously affected by any manipulation. As determined by radioimmunoassay, cells from passage number 56 secreted 917±128 ng/mg cell protein/48 hr of insulin. In contrast, cells from passage number 77 revealed either no channel activity or an occasional nonselective channel, and secreted only 29.4±8.5 ng/mg cell protein/48 hr of insulin. The nonselective channel found in the passage 77 cells had a conductance of 25 pS in symmetrical 140mm KCl solutions. Thus, there appears to be a correlation between the presence of functional K+ channels and insulin secretion.  相似文献   

5.
With the use of the patch-clamp technique, highly selective nonvoltage-gated sodium channels were found in the membrane of rat peritoneal macrophages. The inward single channel currents were measured in cell-attached and outside-out mode experiments at different holding membrane potentials within the range of-60 to +40 mV. The channels had a unitary conductance of 10.2 ± 0.2 pS with 145 mm Na+ in the external solution at 23–24°C. The results of ion-substitution experiments confirmed that this novel type of cation channel in macrophages is characterized by high selectivity for Na+ over K+ (as for Cs+, NH4 +, Ca2+, Ba2+) ions, whose conduction through these sodium-permeable channels was not measurable. Lithium is the only other ion that is transported by this pathway; the unitary conductance was equal to 3.9 ± 0.2 pS in the Li+-containing external solution. Single channel currents and conductance were found to be linearly dependent on the external sodium concentration. Sodium channels in macrophage membrane patches were not blocked by tetrodotoxin (0.01–1 m). Single sodium currents were reversibly inhibited by the external application of amiloride (0.1–2 mm) and its derivative ethylisopropilamiloride (0.01–0.1 Mm). The mechanism of channel block by amiloride and its analogue seems to be different.We thank Dr. G.N. Mozhayeva and Dr. A.P. Naumov for useful discussions. This work has been supported by a grant from the Russian Basic Research Foundation, 93-04-21722.  相似文献   

6.
Nystatin perforated-patch clamp and single-channel recording methods were used to characterize macroscopic and single-channel K+ currents and the effects of angiotensin II (AngII) in cultured rat adrenal glomerulosa cells. Two basic patterns of macroscopic current-voltage relationships were observed: type 1 exhibited a rapidly activating, noninactivating, voltage-dependent outward current and type 2 exhibited an inactivating voltage-dependent outward current attributed to charybdotoxin sensitive Ca++-dependent K+ channels. Most cells exhibited the type 1 pattern and experiments focused on this cell type. Cell-attached and inside-out patches were dominated by a single K+ channel class which exhibited an outward conductance of 12 pS (20 mm K+ pipette in cell-attached and inside-out configurations, 145 mm K+ in), a mean open time of 2 msec, and a weakly voltage-dependent low open probability that increased with depolarization. Channel open probability was reversibly inhibited by bath stimulation with AngII. At the macroscopic level, type 1 cell macroscopic K+ currents appeared comprised of two components: a weakly voltage-dependent current controlling the resting membrane potential (−85 mV) which appeared mediated by the 12 pS K+ channel and a rapidly activating, noninactivating voltage-dependent current activated above −50 mV. The presence of the second voltage-dependent K+ channel class was suggested by the effects of AngII, the blocking effects of quinidine and Cs+, and the properties of the weakly voltage-dependent K+ channel described. The K+ selectivity of the macroscopic current was demonstrated by the dependence of current reversal potentials on the K+ equilibrium potential and by the effects of K+ channel blockers, Cs+ and quinidine. AngII (10 pm to 1 nm) reversibly inhibited macroscopic K+ currents and this effect was blocked by the AT1 receptor antagonist losartin. Received: 6 August 1996/Revised: 15 November 1996  相似文献   

7.
Summary Whole-cell patch-clamp recordings were made from freshly isolated human platelets. The pipette contained a high concentration of divalent cations, which permitted easy disruption of cell-attached membrane patches by suction. Single-channel currents were measured when the pipette contained isotonic BaCl2 or MgCl2 saline; over 30 sec –5 min an increasing number of channels appeared until conductance steps through individual channels could no longer be distinguished. The current-voltage relationship was curvilinear; chord conductance at –35 mV was 25 pS increasing to 45 to 52 pS at +45 mV. Ion substitution experiments showed the current to be primarily carried by Cl.E rev was shifted 30 mV/10-fold change in external Cl (replaced by gluconate), was similar with BaCl2 or MgCl2 in the pipette and was not significantly shifted by replacing external Na+ with K+. Addition of 1mm BAPTA to the MgCl2 pipette saline prevented activation of Cl currents; with isotonic CaCl2 internal saline, current appeared immediately upon patch rupture, suggesting that the Cl channels are dependent on internal Ca2+, 5-nitro-2-(3-phenylpropylamino)-benzoate, reported to block a Cl conductance in studies of rat epithelial cells, caused a potent flickery block and may be a useful tool with which to investigate the physiological role of Cl currents in human platelets.  相似文献   

8.
Summary The properties of Ca2+-activated K+ channels in the apical membrane of theNecturus choroid plexus were studied using single-channel recording techniques in the cell-attached and excised-patch configurations. Channels with large unitary conductances clustered around 150 and 220 pS were most commonly observed. These channels exhibited a high selectivity for K+ over Na+ and K+ over Cs+. They were blocked by high cytoplasmic Na+ concentrations (110mm). Channel activity increased with depolarizing membrane potentials, and with increasing cytoplasmic Ca2+ concentrations. Increasing Ca2+ from 5 to 500nm, increased open probability by an order of magnitude, without changing single-channel conductance. Open probability increased up to 10-fold with a 20-mV depolarization when Ca2+ was 500nm. Lowering intracellular pH one unit, decreased open probability by more than two orders of magnitude, but pH did not affect single-channel conductance. Cytoplasmic Ba2+ reduced both channel-open probability and conductance. The sites for the action of Ba2+ are located at a distance more than halfway through the applied electric field from the inside of the membrane. Values of 0.013 and 117mm were calculated as the apparent Ba2+ dissociation constants (K d (0 mV) for the effects on probability and conductance, respectively. TEA+ (tetraethylammonium) reduced single-channel current. Applied to the cytoplasmic side, it acted on a site 20% of the distance through the membrane, with aK d (0 mV)=5.6mm. A second site, with a higher affinity,K d (0 mV)=0.23mm, may account for the near total block of chanel conductance by 2mm TEA+ applied to the outside of the membrane. It is concluded that the channels inNecturus choroid plexus exhibit many of the properties of maxi Ca2+-activated K+ channels found in other tissues.  相似文献   

9.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

10.
Summary To investigate the voltage dependence of the Na/K pump, current-voltage relations were determined in prophasearrested oocytes ofXenopus laevis. All solutions contained 5mm Ba2– and 20mm tetraethylammonium (TEA) to block K channels. If. in addition, the Na+/K+ pump is blocked by ouabain, K+-sensitive currents no larger than 50 nA/cm2 remain. Reductions in steady-state current (on the order of 700 nA/cm2) produced by 50 m ouabain or dihydro-ouabain or by K+ removal, therefore, primarily represent current generated by the Na/K pump. In Na-free solution containing 5mm K+, Na+/K+ pump current is relatively voltage independent over the potential range from –160 to +40 mV. If external [K+] is reduced below 0.5mm, negative slopes are observed over this entire voltage range. Similar results are seen in Na+- and Ca2+-free solutions in the presence of 2mm Ni2+, an experimental condition designed to prevent Na+/Ca2+ exchange. The occurrence of a negative slope can be explained by the voltage dependence of the apparent affinity for activation of the Na+/K+ pump by external K+, consistent with the existence of an external ion well for K binding. In 90mm Na+, 5mm K+ solution, Na+/K+ pump current-voltage curves at negative membrane potentials have a positive slope and can be described by a monotonically increasing sigmoidal function. At an extracellular [K+] of 1.3mm, a negative slope was observed at positive potentials. These findings suggest that in addition to a voltage-dependent step associated with Na+ translocation, a second voltage-dependent step that is dependent on external [K+], possibly external K+ binding, participates in the overall reaction mechanism of the Na+/K+ pump.  相似文献   

11.
Summary Patch-clamp recording from the apical surface of the epithelium of frog lens reveals a cation-selective channel after pressure (about ±30 mm Hg) is applied to the pipette. The open state of this channel has a conductance of some 50 pS near the resting potential (–56.1±2.3 mV) when 107mm NaCl and 10 HEPES (pH 7.3) is outside the channel. The probability of the channel being open depends strongly on pressure but the current-voltage relation of the open state does not. With minimal Ca2+ (55±2 m) outside the channel, the current-voltage relation is nonlinear even in symmetrical salt solutions, allowing more current to flow into the cell than out. The channel, in minimal Ca2+ solution, is selective among the monovalent cations in the following sequence K+>Rb+>Cs+>Na+>Li+. The conductance depends monotonically on the mole fraction of K+ when the other ion present is Li+ or Na+. The single-channel current is a saturating function of [K+] when K+ is the permeant ion, for [K+]214mm. When [Ca2+]=2mm, the currentvoltage relation is linearized and the channel cannot distinguish Na+ and K+.  相似文献   

12.
Two channels, distinguished by using single-channel patch-clamp, carry out potassium transport across the red cell membrane of lamprey erythrocytes. A small-conductance, inwardly rectifying K+-selective channel was observed in both isotonic and hypotonic solutions (osmolarity decreased by 50%). The single-channel conductance was 26 ± 3 pS in isotonic (132 mm K+) solutions and 24 ± 2 pS in hypotonic (63 mm K+) solutions. No outward conductance was found for this channel, and the channel activity was completely inhibited by barium. Cell swelling activated another inwardly rectifying K+ channel with a larger inward conductance of 65 pS and outward conductance of 15 pS in the on-cell configuration. In this channel, rectification was due to the block of outward currents by Mg2+ and Ca2+ ions, since when both ions were removed from the cytosolic side in inside-out patches the conductance of the channel was nearly ohmic. In contrast to the small-conductance channel, the swelling-activated channel was observed also in the presence of barium in the pipette. Neither type of channel was dependent on the presence of Ca2+ ions on the cytosolic side for activity. Received: 18 July 1997/Revised: 30 January 1998  相似文献   

13.
Summary Patch-clamp techniques have been applied to characterize the channels in the basolateral membrane of resting (cimetidine-treated, nonacid secreting) oxyntic cells isolated from the gastric mucosa ofNecturus maculosa. In cell-attached patches with pipette solution containing 100mm KCl, four major classes of K+ channels can be distinguished on the basis of their kinetic behavior and conductance: (1) 40% of the patches contained either voltage-independent (a) or hyperpolarization-activated (b), inward-rectifying channels with short mean open times (16 msec fora, and 8 msec forb). Some channels showed subconductance levels. The maximal inward conductanceg max was 31±5 pS (n=13) and the reversal potentialE rev was atV p=–34±6 mV (n=9). (2) 10% of the patches contained depolarization-activated and inward-rectifying channels withg max=40 ±18 pS (n=3) andE rev was atV p=–31±5 mV (n=3). With hyperpolarization, the channels open in bursts with rapid flickerings within bursts. Addition of carbachol (1mm) to the bath solution in cell-attached patches increased the open probabilityP o of these channels. (3) 10% of the patches contained voltage-independent inward-rectifying channels withg max=21±3 pS (n=4) andE rev was atV p=–24±9 mV (n=4). These channels exhibited very high open probability (P o=0.9) and long mean open time (1.6 sec) at the resting potential. (4) 20% of the patches contained voltage-independent channels with limiting inward conductance of 26±2 pS (n=3) andE rev atV p=–33±3 mV (n=3). The channels opened in bursts consisting of sequential activation of multiple channels with very brief mean open times (10 msec). In addition, channels with conductances less than 6 pS were observed in 20% of the patches. In all nine experiments with K+ in the pipette solution replaced by Na+, unitary currents were outward, and inward currents were observed only for large hyperpolarizing potentials. This indicates that the channels are more selective for K+ over Na+ and Cl. A variety of K+ channels contributes to the basolateral K+ conductance of resting oxyntic cells.  相似文献   

14.
Summary Using the patch clamp technique we have identified a small conductance ion channel that typically occurs in clusters on the apical plasma membrane of pancreatic duct cells. The cell-attached current/voltage (I/V) relationship was linear and gave a single channel conductance of about 4 pS. Since the reversal potential was close to the resting membrane potential of the cell, and unaffected by changing from Na+-rich to K+-rich pipette solutions, the channel selects for anions over cations in cell-attached patches. The open state probability was not voltagedependent. Adding 25mm-bicarbonate to the bath solution caused a slight outward rectification of theI/V relationship, but otherwise, the characteristics of the channel were unaffected. In excised, inside-out, patches theI/V relationship was linear and gave a single channel conductance of about 4 pS. A threefold chloride concentration gradient across the patch (sulphate replacement) shifted the single channel current reversal potential by –26 mV, indicating that the channel is chloride selective. Stimulation of duct cells with secretin (10nm), dibutyryl cyclic AMP (1mm) and forskolin (1 m) increased channel open state probability and also increased the number of channels, and/or caused disaggregation of channel clusters, in the apical plasma membrane. Coupling of this channel to a chloride/bicarbonate exchanger would provide a mechanism for electrogenic bicarbonate secretion by pancreatic duct cells.  相似文献   

15.
Summary Human red cells were prepared with various cellular Na+ and K+ concentrations at a constant sum of 156mm. At maximal activation of the K+ conductance,g K(Ca), the net efflux of K+ was determined as a function of the cellular Na+ and K+ concentrations and the membrane potential,V m , at a fixed [K+]ex of 3.5mm.V m was only varied from (V m E K)25 mV and upwards, that is, outside the range of potentials with a steep inward rectifying voltage dependence (Stampe & Vestergaard-Bogind, 1988).g K(Ca) as a function of cellular Na+ and K+ concentrations atV m =–40, 0 and 40 mV indicated a competitive, voltage-dependent block of the outward current conductance by cellular Na+. Since the present Ca2+-activated K+ channels have been shown to be of the multi-ion type, the experimental data from each set of Na+ and K+ concentrations were fitted separately to a Boltzmann-type equation, assuming that the outward current conductance in the absence of cellular Na+ is independent of voltage. The equivalent valence determined in this way was a function of the cellular Na+ concentration increasing from 0.5 to 1.5 as this concentration increased from 11 to 101mm. Data from a previous study of voltage dependence as a function of the degree of Ca2+ activation of the channel could be accounted for in this way as well. It is therefore suggested that the voltage dependence ofg K(Ca) for outward currents at (V m E K)>25 25 mV reflects a voltage-dependent Na+ block of the Ca2+-activated K+ channels.  相似文献   

16.
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.  相似文献   

17.
Summary Cerebral capillaries from porcine brain were isolated. and endothelial cells were grown in primary culture. The whole-cell tight seal patch-clamp method was applied to freshly isolated single endothelial cells, and cells which were held in culture up to one week. With high K+ solution in the patch pipette and in the bath we observed inward-rectifying K+ currents, showing a time-dependent decay in part of the experiments. Ba2+ (1–10mm) in the bath blocked this current, whereas outside tetraethylammonium (10mm) decreased the peak current but increased the steady-state current. Addition of 1 m of angiotensin II or of arginine-vasopressin to the extracellular side caused a time-dependent inhibition of the inward-rectifying K+ current in part of the experiments. Addition of 100 m GTP[-S] to the patch pipette blocked the K+ inward rectifier. In cell-attached membrane patches two types of single inward-rectifying K+ channels were observed, with single channel conductances of 7 and 35 pS. Cell-attached patches were also obtained at the antiluminal membrane of intact isolated cerebral capillaries. Only one type of K+ channel withg=30 pS was recorded. In conclusion, inwardly rectifying K+ channels, which can be inhibited by extracellular angiotensin II and arginine-vasopressin, are present in cerebral capillary endothelial cells. The inhibition of this K+ conductance by GTP[-S] indicates that G-proteins are involved in channel regulation. It is suggested that angiotensin II and vasopressin regulate K+ transport across the blood-brain barrier, mediating their effects via G-proteins.  相似文献   

18.
Summary Outward rectifying. cation channels were observed in the epithelial cells of the urinary bladder of the toad.Bufo marinus. As studied in isolated cells using the patch-clamp technique, the channel has an average conductance of 24 and 157 pS for pipette potentials between 0 and +60 mV and –60 to –100 mV, respectively, when the major cation in both bath and pipette solutions is K+. The conductance of the cannel decreasen with increasing dehydration energy of the permeant monovalent cation in the oder Rb+=K+>Na+>Li+. Reversal potentials near zero under biionic conditions imply that the permeabilities for all four of these cations are smiliar. The channel is sensitive to quinidine sulfate but not to amiloride. It shares several pharmacological and biophysical properties with an outwardly-rectifying, vasopressin-sensitive pical K+ conductive pathway described previously for the toad urinary bladder. We demonstrate, in both single-channel and whole-bladder studies, that the outward rectification is a consequence of interaction of the chanel with extracellular divalent cations, particularly Ca2+, which blocks inward but not outward current. Various divalent cations impart different degrees of outward rectification to the conductive pathway. Concentrations of Mg2+ and Ca2+ required for halfmaximal effect are 3×10–4 and 10–4 m, resopectively. For Co2+ the values are 10–6 m at +50 mV and a 10–4 m at +200 mV. The mechanism of blockade by divalent cations is not established, but does not seem to involve a voltage-dependent interaction in which the blocker penetrates the transmembrane electric field. In the absence of divalent cations in the mucosal solution, the magnitudes of inward current carried by Rb+, K+, Na+ and Li+ through the apical K+ pathway at any transepithelial voltage, are in the same order as in the single-channel studies. We propose that the cation channel observed by us in isolated epithelial cells is the single-channel correlate of the vasopressin-sensitive apical K+ conductive pathway in the toad urinary bladder and is also related to the oxytocin- and divalent cation-sensitive apical condictivity observed in frog skin and urinary bladder.  相似文献   

19.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

20.
Summary Using the patch-clamp technique we have identified a Ca2+-sensitive, voltage-dependent, maxi-K+ channel on the basolateral surface of rat pancreatic duct cells. The channel had a conductance of 200 pS in excised patches bathed in symmetrical 150mm K+, and was blocked by 1mm Ba2+. Channel openstate probability (P o ) on unstimulated cells was very low, but was markedly increased by exposing the cells to secretin, dibutyryl cyclic AMP, forskolin or isobutylmethylxanthine. Stimulation also shifted theP o /voltage relationship towards hyperpolarizing potentials, but channel conductance was unchanged. If patches were excised from stimulated cells into the inside-out configuration,P o remained high, and was not markedly reduced by lowering bath (cytoplasmic) Ca2+ concentration from 2mm to 0.1 m. However, activated channels were still blocked by 1mm Ba2+. ChannelP o was also increased by exposing the cytoplasmic face of excised patches to the purified catalytic subunit of cyclic AMP-dependent protein kinase., We conclude that cyclic AMP-dependent phosphorylation can activate maxi-K+ channels on pancreatic duct cells via a stable modification of the channel protein itself, or a closely associated regulatory subunit, and that phosphorylation alters the responsiveness of the channels to Ca2+. Physiologically, these K+ channels may contribute to the basolateral K+ conductance of the duct cell and, by providing a pathway for current flow across the basolateral membrane, play an important role in pancreatic bicarbonate secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号