首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using immunohistochemical labeling against acetylated a‐tubulin and serotonin in combination with confocal laser scanning microscopy and 3D‐reconstruction, we investigated the temporary freshwater pond inhabitant Branchinella sp. (Crustacea: Branchiopoda: Anostraca) for the first time to provide detailed data on the development of the anostracan nervous system. Protocerebral sense organs such as the nauplius eye and frontal filament organs are present as early as the hatching stage L0. In the postnaupliar region, two terminal pioneer neurons grow from posterior to anterior to connect the mandibular neuromeres. The first protocerebral neuropil to emerge is not part of the central complex but represents the median neuropil, and begins to develop from L0+ onwards. In stage L3, the first evidence of developing compound eyes is visible. This is followed by the formation of the visual neuropils and the neuropils of the central complex in the protocerebrum. From the deutocerebral lobes, the projecting neuron tract proceeds to both sides of the lateral protocerebrum, forming a chiasma just behind the central body. In the postnaupliar region, the peripheral nervous system, commissures and connectives develop along an anterior–posterior gradient after the fasciculation of the terminal pioneer neurons with the mandibular neuromere. The peripheral nervous system in the thoracic segments consists of two longitudinal neurite bundles on each side which connect the intersegmental nerves, together with the ventral nervous system forming an orthogon‐like network. Here, we discuss, among other things, the evidence of a fourth nauplius eye nerve and decussating projecting neuron tract found in Branchinella sp., and provide arguments to support our view that the crustacean frontal filament (organ) and onychophoran primary antenna are homologous. J. Morphol. 277:1423–1446, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Abstract. The formation of the central nervous system of the stomatopod crustacean Gonodactylaceus falcatus is described by means of antibody stainings against synapsin and α-tubulin. It is shown that the longitudinal fiber tracts of the ventral nervous system are formed by two centers of origin comprising a number of pioneer neurons, one at the posterior part of the forming brain, the other in the area of the telson anlage at the posteriormost region of the embryo. In addition to the lateral anlagen of the connectives, a median longitudinal nerve is formed beginning in the mandibular segment neuromere. In contrast to those of other segments, the mandibular ganglia are connected by a single commissure. The brain forms a circumoral ring. There is evidence that the deutocerebrum possesses praestomodeal and poststomodeal commissural fibers. The anlage of the nauplius eye reveals a specific pattern of pigment and sensory cells with the two pigment cells expressing synapsin. Clear differences between the expression patterns of synapsin and α-tubulin recommend the combination of a variety of antibodies to gain a complete picture of embryonic neuroanatomy. Our results show overall similarities to other malacostracan and non-malacostracan crustaceans. The comparisons with other crustaceans and arthropods indicate homology of crustacean nauplius eyes, a circumoral deutocerebrum, and a more widespread occurrence of posterior pioneer neurons forming the axon scaffold of the ventral central nervous system than previously thought.  相似文献   

3.
Summary Neurones in the suboesophageal ganglion of the locust Schistocerca gregaria were stained with an antiserum raised against gamma amino butyric acid (GABA). This ganglion consists of the fused mandibular, maxillary and labial neuromeres. Immunoreactive cell bodies of similar size and distribution occur in the lateral, ventral and middorsal regions of all three neuromeres. Approximately 200 cell bodies stain in both the mandibular and maxillary neuromeres and 270 in the labial neuromere. A few distinctly larger cells occur in the ventral groups and one large pair occurs in the lateral group of the maxillary neuromere. Dorsal commissures DCIV and DCV are composed mainly of stained fibres, while DCI–DCIII are largely unstained. A ventral commissure also stains in the maxillary neuromere. All longitudinal tracts contain both stained and unstained fibres. Many processes within the neuropil are also immunoreactive. A stained axon is found in the posterior tritocerebral commissure which enters the anterior dorsal region of the mandibular neuromere. The salivary branch of the 7th nerve contains one stained axon and two axons stain in nerve 8 which innervates neck muscles.  相似文献   

4.
The nauplius eye in Cyclestherida, Laevicaudata and Spinicaudata (previously collectively termed Conchostraca) consists of four cups of inverse sensory cells separated by a pigment layer and a tapetum layer. There are two lateral and two medial cups, a ventral medial cup and a posterior medial cup. The pigment and tapetum layers contain two different kinds of pigment granules, the inner pigment layer relatively large, dark (and electron dense) granules, and the outer tapetum layer light, reflective pigment granules. The presence of four cups and two different kinds of pigment granules are interpreted as autapomorphies of Phyllopoda. The position and shape of the nauplius eye in Spinicaudata is very distinct and herein interpreted as an autapomorphy of this taxon.Additional frontal eyes might be present dorsally or ventrally in varying proximity to the nauplius eye, but they have separate nerves from their sensory cells to the nauplius eye centre in the protocerebrum. Rhabdomeric structures are present in all these frontal eyes, evidencing their light sensitivity. In Lynceus biformis and L. tatei (Laevicaudata), two pairs of frontal eyes were found. In Cyclestheria hislopi (Cyclestherida), an unpaired ventral frontal eye is present. We did not find additional frontal eyes in Limnadopsis parvispinus and Caenestheriella sp. (Spinicaudata).  相似文献   

5.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

6.
【目的】解剖棉铃虫Helicoverpa armigera (Hübner) 5龄幼虫脑和咽下神经节及其内部神经髓形态结构,并分析和构建幼虫脑和咽下神经节以及各神经髓的三维结构模型。【方法】采用免疫组织化学方法解剖脑和咽下神经节的内部神经髓结构,利用激光共聚焦显微镜获取脑和咽下神经节扫描图像,然后利用AMIRA 三维图像分析软件进行图像分析,从而构建脑和咽下神经节的三维结构模型,并测量脑和咽下神经节以及内部各神经髓的体积,并分析了相对比例。【结果】 棉铃虫5龄幼虫脑和咽下神经节由围咽神经索连接在一起。脑主要由前脑、中脑和后脑3部分组成。前脑内包括视叶、蕈形体和中央体等形态结构较明显的神经髓。此外,前脑还包括其他位于脑的左右两侧以及背侧和腹侧大量神经髓区域,约占脑总神经髓的59.65%。这些神经髓区域边界不明显。中脑主要包括1对触角叶;后脑位于脑的腹侧和触角叶的下方,体积较小。咽下神经节由3个神经节融合构成,从前到后分别为上颚神经节、下颚神经节和下唇神经节,由于融合的紧密程度高,3个神经节间的边界不明显。【结论】阐明了棉铃虫5龄幼虫脑和咽下神经节的神经髓形态结构,构建了脑和咽下神经节以及内部神经髓的三维结构模型。三维模型可以任意旋转,能从任何角度观察脑、咽下神经节和内部不同神经髓的结构及其它们之间的空间关系。本研究结果对研究棉铃虫脑和咽下神经节信息接收、处理及调控行为的机制奠定了解剖学基础。  相似文献   

7.
The major axon tracts in the embryonic CNS ofDrosophila are organised in a simple, ladder-like pattern. Each neuromere contains two commissures which connect the contra-lateral sides and two longitudinal connectives which connect the different neuromeres along the anterior-posterior axis. The commissures form in close association with only few cells located at the CNS midline. The formation of longitudinal connectives depends in part on the presence of specific lateral glial cells. To unravel the genes underlying the formation of the embryonic CNS axon pattern, we conducted a saturating F2 EMS mutagenesis, screening for mutations, which disrupt this process. The analyses of the identified mutations lead to a simple sequential model on axon pattern formation in embryonic CNS.  相似文献   

8.
We investigated early larval development in the notostracan Triops cancriformis (Bosc, 1801–1802) raised from dried cysts under laboratory conditions. We document the five earliest stages using scanning electron microscopy. The stage I larva is a typical nauplius, lecithotropic and without trunk limbs. The stage II larva is feeding and has trunk limb precursors and a larger carapace. Stage III larvae have larger trunk limbs and a more adult shape. Stage IV larvae have well developed trunk limbs, and stage V larvae show atrophy of the antennae. We describe the ontogeny of selected features such as trunk limbs and carapace, discuss ontogeny and homologization of head appendages, follow the development of the feeding mechanism, and discuss trunk limb ontogeny.  相似文献   

9.
 The ventral nerve cord of arthropods is characterised by the organisation of major axon tracts in a ladder-like pattern. The individual neuromeres are connected by longitudinal connectives whereas the contra-lateral connections are brought about through segmental commissures. In each neuromere of the embryonic central nervous system (CNS) of Drosophila an anterior and a posterior commissure is found. The development of these commissures requires a set of neurone-glia interactions at the midline. Here we show that both the anterior as well as the posterior commissures are subdivided into three axon-containing regions. Electron microscopy of the ventral nerve cord of mutations affecting CNS midline cells indicates that the midline glial cells are required for this subdivision. In addition the midline glial cells appear required for a crossing of commissural growth cones perpendicular to the longitudinal tracts, since in mutants with defective midline glial cells commissural axons frequently cross the midline at aberrant angles. Received: 6 July 1997 / Accepted: 27 August 1997  相似文献   

10.
SUMMARY Within the last decade, gene expression patterns and neuro‐anatomical data have led to a new consensus concerning the long‐debated association between anterior limbs and neuromeres in the arthropod head. According to this new view, the first appendage in all extant euarthropods is innervated by the second neuromere, the deutocerebrum, whereas the anterior‐most head region bearing the protocerebrum lacks an appendage. This stands in contrast to the clearly protocerebrally targeted “antennae” of Onychophora and to some evidence for protocerebral limbs in fossil euarthropod representatives. Yet, the latter “frontal appendages” or “primary antennae” have most likely been reduced or lost in the lineage, leading to extant taxa. Surprisingly, a recent neuro‐anatomical study on a pycnogonid challenged this evolutionary scenario, reporting a protocerebral innervation of the first appendages, the chelifores. However, this interpretation was soon after questioned by Hox gene expression data. To re‐evaluate the unresolved controversy, we analyzed neuro‐anatomy and neurogenesis in four pycnogonid species using immunohistochemical techniques. We clearly show the postprotocerebral innervation of the chelifores, which is resolved as the plesiomorphic condition in pycnogonids when evaluated against a recently published comprehensive phylogeny. By providing direct morphological support for the deutocerebral status of the cheliforal ganglia, we reconcile morphological and gene expression data and argue for a corresponding position between the anterior‐most appendages in all extant euarthropods. Consequently, other structures have to be scrutinized to illuminate the fate of a presumptive protocerebral appendage in recent euarthropods. The labrum and the “frontal filaments” of some crustaceans are possible candidates for this approach.  相似文献   

11.
Biomass (CHN), respiration rate and food uptake were estimated for the larval development ofElminius modestus at three temperatures (12, 18, 24°C). Mean values of dry weight, elemental composition and energy equivalents increased exponentially with the development from nauplius II to VI. Dry weight, elemental composition and energy content exhibited the highest values at 18°C. Respiration rates increased with the larval stages expressed by a power function, but increased logarithmically with the dry weight of the larvae. The cypris larvae showed a reduced respiration rate compared with nauplius VI. The ingestion rate was measured at a concentration of 100 cells ofSkeletonema costatum μl−1. At 12 and 18°C ingestion rates increased exponentially and at 24°C by a logarithmic function. The fittings were used to estimate the energy budget ofE. modestus during larval development. The energy content of the larvae increased during the development from nauplius II to VI by a factor of 21 at 12°C, 25 at 24°C and 31 at 18°C. The estimated energy content of the freshly metamorphosed barnacle is 100 mJ (12°C), 130 mJ (24°C) and 150 mJ (18°C). The assimilation- (A/I) and gross growth efficiencies (K1) increased strongly during the development from nauplius II to VI (A/I: 6–14% in nauplius II to 50–90% in nauplius VI; K1: 4% in nauplius II to 75% in nauplius VI). The net growth efficiency (K2) showed a relatively constant level ranging between 57 and 83%.  相似文献   

12.
The evolutionary origin of the tritocerebral neuromere, which is a brain segment located at the junction between the supra- and subesophageal ganglia in most mandibulates (arthropods such as crustaceans and insects), is a subject rich in contentious debate. Various models have argued that the tritocerebrum came from a segmental nerve cord ganglia that was recruited into the head during the course of arthropod evolution. However, despite much thought on the subject, the origin of the tritocerebrum remains obscure. Here I describe the development of the tritocerebral commissure in Drosophila and demonstrate that the tritocerebral and mandibular commissures actually form as one commissure and then separate in a manner very similar to how the anterior and posterior commissures of a ventral nerve cord neuromere form. I propose that the tritocerebral neuromere originated from the splitting of an ancestral neuromere located in the anterior subesophageal ganglion into distinct tritocerebral and mandibular neuromeres. Also, I discuss the problem of arthropod brain neuromere homology in reference to this hypothesis.  相似文献   

13.
Summary InNotodromas monachus, the three cups of the nauplius eye are formed by four pigment cells. The insides of the cups are lined with tapetal cells, which produce several layers of reflecting crystals. The reflecting crystals form a concave mirror in each cup upon which the retinular cells rest. The two-celled rhabdoms are few and perpendicular to the tapetal layer. The axons from the tripartite eye leave the retinular cells distally in three separate groups. The eye is thus of the inverse type. Large lens cells, with a low refractive index, are present in the open part of each cup. Distal to the lens cells, highly refractive lenses are formed in the cuticle. These lenses serve to decrease the effective curvature of the mirrors, thus enabling the reflectors to produce a focused image on the retina. The ventral cup differs by the lack of a cuticular lens and has degenerated-appearing cellular elements. The investigated nauplius eye is the only one known with both a mirror and a highly refractive lens in the dioptric apparatus.This investigation has been supported by grants from the Swedish Natural Science Research Council (grant no. 2760-009) and the Royal Physiographic Society of Lund.  相似文献   

14.
15.
The distribution of proctolin in the central nervous system of the hemipteran bug, Triatoma infestans, was studied by immunohistochemistry using the sensitive avidin‐biotin technique combined with nickel salt intensification of the reaction product. Proctolin was present in cells and fibers of the brain and ganglia. In the brain, protocerebral proctolin‐immunoreactive cell bodies were found in the pars intercerebralis, the optic lobes, and the lateral soma rind. The deutocerebrum showed positive somata in relation to the antennal motor center and the tritocerebrum had intense immunoreactive fibers but few positive cells. Proctolin‐immunoreactive cell bodies of different sizes were observed in the subesophageal ganglion. Large cell bodies were found mainly rostrally and beaded positive processes were present around the ventral border of the esophageal foramen and in the rostrolateral neuropil of this ganglion. Small‐ to medium‐sized positive somata were found in the posterior part of the prothoracic ganglion; some of these cells were sending immunoreactive processes to the central neuropil. The meso‐metathoracic‐abdominal ganglionic mass showed positive cells in all the neuromeres, where some of them were large and had thick immunoreactive granules. The results show that the labeling pattern of proctolin‐like immunoreactivity in Triatoma i. appears to be widespread and unique for its central nervous system. It is suggested that proctolin may serve neuroendocrine, integrative, and motor functions in the brain of T. infestans. J. Morphol. 240:39–47, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
17.
Summary We studied the neuroanatomy of the terminal (sixth abdominal) ganglion in the crayfish Procambarus clarkii with silver-impregnated sections and nickel fills. We describe the fiber tracts, commissures and neuropilar areas, and give the topological relationships of motoneurons and intersegmental interneurons with reference to their neuropilar landmark structures.All five anterior abdominal ganglia have an almost identical number of 600–700 neurons with a similar pattern of distribution. Each contains a single neuromere with a common plan of neuropil organization. In contrast, the terminal ganglion consists of two neuromeres which appear to be derived from the intrinsic sixth abdominal and telson ganglion. The basic organization of each neuromere parallels that of the third abdominal ganglion in the appearance and arrangement of fiber tracts and commissures, although some modifications occur. The fusion of two neuromeres is represented by the duplication of segmentally homologous neurons, MoGs and LGs, whose topological relationships to the neuropil structures are similar to those of the anterior ganglion.We also discuss the origin of the telson and its ganglion (the seventh abdominal neuromere), and dispute the classical theory that the telson derives from a postsegmental region.  相似文献   

18.
Mystacocarida is a species‐poor group of minute crustaceans with unclear phylogenetic affinities. Previous studies have highlighted the putative “primitiveness” of several mystacocarid features, including the architecture of the nervous system. Recent studies on arthropod neuroarchitecture have provided a wealth of characters valuable for phylogenetic reconstructions. To permit and facilitate comparison with these data, we used immunohistochemical labeling (against acetylated α‐tubulin, serotonin and FMRFamide) on the mystacocarid Derocheilocaris remanei, analyzing it with confocal laser‐scanning microscopy and 3D reconstruction. The mystacocarid brain is fairly elongated, exhibiting a complicated stereotypic arrangement of neurite bundles. However, none of the applied markers provided evidence of structured neuropils such as a central body or olfactory glomeruli. A completely fused subesophageal ganglion is not present, all segmental soma clusters of the respective neuromeres still being delimitable. The distinct mandibular commissure comprises neurite bundles from more anterior regions, leading us to propose that it may have fused with an ancestral posterior tritocerebral commissure. The postcephalic ventral nervous system displays a typical ladder‐like structure with separated ganglia which bears some resemblance to larval stages in other crustaceans. Ganglia and commissures are also present in the first three limbless “abdominal” segments, which casts doubt on the notion of a clear‐cut distinction between thorax and abdomen. An unpaired longitudinal median neurite bundle is present and discussed as a potential tetraconate autapomorphy. Additionally, a paired latero‐longitudinal neurite bundle extends along the trunk. It is connected to the intersegmental nerves and most likely fulfils neurohemal functions. We report the complete absence of serotonin‐ir neurons in the ventral nervous system, which is a unique condition in arthropods and herein interpreted as a derived character. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
As part of a larger project examining and comparing the ontogeny of all major taxa of the Branchiopoda in a phylogenetic context, the larval development of Caenestheriella gifuensis (Ishikawa, 1895), a Japanese spinicaudatan ‘conchostracan’, is described by scanning electron microscopy. Seven different larval stages are recognised, in most cases based on significant morphological differences. They range in length from about 200 to 850 μm. Nauplius 1 has a plumb and lecithotrophic appearance with a rounded hind body and a labrum with an incipient medial spine. Limb segmentation is mostly unclear but the second antennae have more putative segments delineated than are expressed in the later stages. Feeding structures such as the mandibular coxal process and antennal coxal spine are only weakly developed. Nauplius 2 is very different from nauplius 1 and has three large spines on the labral margin and two long caudal spines. Feeding structures such as the mandibular coxal process and various spines and setae are developed, but whether feeding begins at this stage was not determined. The mandible has developed an ‘extra’ seta on endopod segment 1, absent in Nauplius 1. The segmentation of the second antenna has changed significantly due to fusions of various early segments. Nauplius 3 is like nauplius 2 in morphological detail, but larger and more elongate. Nauplius 4 has developed a pair of small anlagen of the carapace and rudiments of the first five pairs of trunk limbs, and the coxal spine of the antenna has become distally bifid. Nauplius 5 has a larger carapace anlage, externally visible enditic portions of the elongate trunk limbs, and a pair of primordial dorsal telson setae. Nauplius 6 has a larger and partly free carapace and better-developed, partly free trunk limbs with incipient enditic, endopodal, and exopodal setation. A pair of caudal spines, dorsal to the large caudal spines, has appeared. Nauplius 7 is quite similar to nauplius 6 but is larger and has slightly longer caudal and labral spines; also, the setation of the most anterior trunks limbs is better developed. The larval development is largely similar to that of other spinicaudatans. The larval mandible, which is evolutionarily conservative within the Branchiopoda, reveals a setation pattern similar to that of the Anostraca and Notostraca (two setae on mandibular endopod segment 1). Most other spinicaudatans and all examined laevicaudatans share another setal pattern (one seta on mandibular endopod segment 1), which could indicate a close relationship among these taxa. The second antenna undergoes a special development, which provides an insight into the evolution of this limb within the Branchiopoda. In nauplius 1 the basipod, endopod, and exopod are all superficially divided into a relatively high number of segments. In later nauplii some of these have fused, forming fewer but larger segments. We suggest that this ontogeny reflects the evolution of antennae in the conchostracans. Various aspects of the morphology of the antennae are discussed as possible synapormorphies for either the Diplostraca or subgroups of the Conchostraca.  相似文献   

20.
This study sets out to provide a systematic analysis of the development of the primordial central nervous system (CNS) in embryos of two decapod crustaceans, the Australian crayfish Cherax destructor (Malacostraca, Decapoda, Astacida) and the parthenogenetic Marbled crayfish (Marmorkrebs, Malacostraca, Decapoda, Astacida) by histochemical labelling with phalloidin, a general marker for actin. One goal of our study was to examine the neurogenesis in these two organisms with a higher temporal resolution than previous studies did. The second goal was to explore if there are any developmental differences between the parthenogenetic Marmorkrebs and the sexually reproducing Australian crayfish. We found that in the embryos of both species the sequence of neurogenetic events and the architecture of the embryonic CNS are identical. The naupliar neuromeres proto-, deuto-, tritocerebrum, and the mandibular neuromeres emerge simultaneously. After this “naupliar brain” has formed, there is a certain time lag before the maxilla one primordium develops and before the more caudal neuromeres follow sequentially in the characteristic anterior–posterior gradient. Because the malacostracan egg-nauplius represents a re-capitulation of a conserved ancestral information, which is expressed during development, we speculate that the naupliar brain also conserves an ancestral piece of information on how the brain architecture of an early crustacean or even arthropod ancestor may have looked like. Furthermore, we compare the architecture of the embryonic crayfish CNS to that of the brain and thoracic neuromeres in insects and discuss the similarities and differences that we found against an evolutionary background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号