首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm storage is an important phenomenon occurring in viviparous and oviparous teleosts and contributes to the reproductive life history of these forms. There is a paucity of morphological studies on sperm storage in fishes. The majority of these have been confined to the light level of investigation. In this report, we describe, at the ultrastructural level, sperm storage in the viviparous platyfish, Xiphophorus maculatus. Female platyfish, as is typical of the poeciliids, are capable of storing viable sperm for up to several months within the ovary and gonoduct. We observed that sperm stored within inseminated platyfish became associated with specific epithelial cells (SACs) lining the oviduct. Two forms of association were seen: 1) sperm were found within deep surface pits and pockets, and 2) the spermatozoa were taken up and incorporated within the cytoplasm of the SACs. Junctional complexes in the form of tight junctions (zona occludens) and desmosomes at the apico-lateral surfaces of the SACs were prevalent. The junctions could have contributed to allograft survival of the haploid heterogenetic sperm cells within the female's reproductive tract. Our results shed light on the mechanism of sperm storage in the platyfish and could serve as a model for other poeciliid species and teleosts that are capable of storing sperm.  相似文献   

2.
R. Shine 《Oecologia》1987,71(4):608-612
Summary Why are viviparous squamate reptiles more common in cold climates, and oviparous ones in warmer areas? The usual explanation is that (1) oviparous squamates cannot reproduce successfully in cold areas because soil temperatures are too low for embryonic development; and (2) viviparous squamates experience lower survivorship or reproductive success than oviparous taxa in warmer areas. These hypotheses suggest that the boundaries of geographic distributions of congeneric oviparous and viviparous squamates should be predictable from data on thermal tolerances of embryos, and estimated temperatures of soils and gravid female reptiles throughout the potential geographic range of the taxon. In large venomous Australian snakes of the genus Pseudechis, distributional boundaries of oviparous and viviparous taxa can be accurately predicted from such data. This predictive ability, if substantiated by studies of other reproductively biomodal squamate taxa, would support the putative role of reproductive mode as a direct determinant of reptilian geographic distributions.  相似文献   

3.
4.
The testes of 19 species of viviparous halfbeaks from three genera, Nomorhamphus, Dermogenys, and Hemirhamphodon, are examined histologically. The testes are unfused, paired organs running laterally along the body wall on either side of the gut. In all genera, primary spermatogonia are restricted to the distal termini of the testicular lobules just beneath the tunica albuginea, conforming to the typical atherinomorph testis type. The short efferent ducts empty into a single longitudinal main duct in each testis. All species package sperm in the form of unencapsulated sperm bundles, which are referred to as spermatozeugmata. The mechanism of packet formation and the resulting spermatozeugmata are similar in all five species of Nomorhamphus and in four species of Dermogenys, with each spermatocyst releasing several small spermatozeugmata. In the other four species of Dermogenys, the mechanism of packet formation is similar, and each spermatocyst releases a single, large spermatozeugma. The spermatozeugmata of six species of Hemirhamphodon are unlike those seen in the other two genera, with five different sperm bundle types described herein. The unique sperm bundles of the viviparous halfbeaks are compared with those of the internally fertilizing but oviparous halfbeak genus, Zenarchopterus, discussed within a phylogenetic framework, and hypothesized to be independently derived within the Atherinomorpha. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The cyprinodontiform family Goodeidae comprises two biogeographically disjunct subfamilies: the viviparous Goodeinae endemic to the Mexican Plateau, and the oviparous Empetrichthyinae, known only from relict taxa in Nevada and California. Ovarian characteristics of two oviparous species of goodeid, Crenichthys baileyi and Empetrichthys latos, studied using museum collections, are compared with those of viviparous species of goodeids. Both subfamilies have a single, cystovarian ovary. The ovary in the viviparous Goodeinae has an internal septum that divides the ovarian lumen into two compartments, and it may possess oogonia. There is no ovarian septum in the oviparous C. baileyi and E. latos. Oogenesis is similar in both subfamilies with regard to the proliferation of oogonia, initiation of meiosis, primary growth and development of an oocyte during secondary growth in which fluid yolk progressively fuses into a single globule. Notably, eggs of C. baileyi and E. latos are approximately double the size of those of the viviparous Goodeinae in which embryos develop inside the ovarian lumen and are nourished, in part, by nutrients transferred from the maternal tissues, a mode of embryo development called matrotrophy. Egg envelopes of the two subfamilies differ in that those of C. baileyi and E. latos have a relatively thick zona pellucida, attachment fibrils or filaments that develop between the follicle cells during oogenesis, and a micropyle observed only in E. latos. In contrast, viviparous goodeid eggs have a relatively thin zona pellucida, but lack adhesive fibrils, and a micropyle was not observed. These reproductive characters are compared with those of species of the eastern North American Fundulus, a representative oviparous cyprinodontiform. One newlyrecognized shared, derived character, a single, median ovoid ovary with no obvious external evidence of fusion, supports monophyly of the Goodeidae. Differences among the goodeid subfamilies and Fundulus are interpreted relative to the oviparous versus viviparous modes of reproduction. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
Viviparous teleosts exhibit two patterns of embryonic nutrition: lecithotrophy (when nutrients are derived from yolk that is deposited in the oocyte during oogenesis) and matrotrophy (when nutrients are derived from the maternal blood stream during gestation). Nutrients contained in oocytes of matrotrophic species are not sufficient to support embryonic development until term. The smallest oocytes formed among the viviparous poeciliid fish occur in the least killifish, Heterandria formosa, these having diameters of only 400 μm. Accordingly, H. formosa presents the highest level of matrotrophy among poeciliids. This study provides histological details occurring during development of its microlecithal oocytes. Five stages occur during oogenesis: oogonial proliferation, chromatin nucleolus, primary growth (previtellogenesis), secondary growth (vitellogenesis), and oocyte maturation. H. formosa, as in all viviparous poeciliids, has intrafollicular fertilization and gestation. Therefore, there is no ovulation stage. The full‐grown oocyte of H. formosa contains a large oil globule, which occupies most of the cell volume. The oocyte periphery contains the germinal vesicle, and ooplasm that includes cortical alveoli, small oil droplets and only a few yolk globules. The follicular cell layer is initially composed of a single layer of squamous cells during early previtellogenesis, but these become columnar during early vitellogenesis. They are pseudostratified during late vitellogenesis and reduce their height becoming almost squamous in full‐grown oocytes. The microlecithal oocytes of H. formosa represent an extreme in fish oogenesis typified by scarce yolk deposition, a characteristic directly related to matrotrophy. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Squamate embryos require weeks of high temperature to complete development, with the result that cool climatic areas are dominated by viviparous taxa (in which gravid females can sun‐bask to keep embryos warm) rather than oviparous taxa (which rely on warm soil to incubate their eggs). How, then, can some oviparous taxa reproduce successfully in cool climates – especially late in summer, when soil temperatures are falling? Near the northern limit of their distribution (in Sweden), sand lizards (Lacerta agilis) shift tactics seasonally, such that the eggs in late clutches complete development more quickly (when incubated at a standard temperature) than do those of early clutches. That acceleration is achieved by a reduction in egg size and by an increase in the duration of uterine retention of eggs (especially, after cool weather). Our results clarify the ability of oviparous reptiles to reproduce successfully in cool climates and suggest a novel advantage to reptilian viviparity in such conditions: by maintaining high body temperatures, viviparous females may escape the need to reduce offspring size in late‐season litters.  相似文献   

8.
In Sauropterygia, a diverse group of Mesozoic marine reptiles, fossil evidence of viviparity (live‐bearing) only exists for Pachypleurosauria and Plesiosauria, and was assumed to also be the case for nothosaurs. Previous studies have successfully applied an extant squamate model to sauropterygian life‐history traits. In extant squamates, oviparity and viviparity are associated with differences in life‐history trait combinations. We establish growth curves for Nothosaurus specimens based on their humeral histology. We then analyse life‐history traits derived from these curves and compare inferred traits to those of modern squamates and pachypleurosaurs to assess their reproduction mode. We show that birth to adult size ratios (i.e. birth size divided by the mother's size) provide good estimates of clutch sizes in extant squamates and in viviparous extinct marine reptiles, but these ratios cannot discriminate viviparous and oviparous squamates. Thus, large ratios do not indicate viviparity in fossil taxa to which the extant squamate model is applicable. Applying differences in birth size, age at maturation, and maximum longevity that are observed between extant viviparous and oviparous squamates to our Nothosaurus sample, we identified 7 out of 24 specimens as being potentially viviparous. Conversely, they suggested oviparity for many nothosaurs but also for many pachypleurosaur samples. Under the assumption that the entire clade Pachypleurosauria was viviparous, the majority of nothosaurs would also have been viviparous as they comprised trait combinations similar to those seen in pachypleurosaurs. Overall, this suggests that within nothosaurs and pachypleurosaurs both reproduction modes existed in different taxa.  相似文献   

9.
In a cladistic analysis, poeciliids and zenarchopterids homoplasically show elongation and flattening of the nucleus at right angles to the plane of the central axonemal singlets; in both the tip of the nucleus appears rounded in the plane of flattening but pointed in the plane at right angles. The two families differ in the distribution of mitochondria in the .elongate midpiece: circumferential in poeciliids but bilateral in zenarchopterids. In poeciliid sperm and independently in Zenarchopterus, the individual mitochondria are considerably more extensive circumferentially than longitudinally; they differ in poeciliids in being C-shaped. In Hemirhamphodon they are moderately elongate. In Dermogenys and Nomorhamphus they have been modified monophyletically as a pair of elongate mitochondrial derivatives. A wide cytoplasmic periaxonemal sheath (not seen in poeciliids) appears to have developed monophyletically in the ancestry of Hemirhamphodon, Dermogenys and Nomorhamphus with acquisition of radial rodlets only in Hemirhamphodon. A distinctive development in poeciliids is the submitochondrial net. Poeciliids have greatly reduced the axonemal fins which are a synapomorphy of the Actinopteri. Exocoetoids have retained well developed fins in Arrhamphus, Dermogenys and Nomorhamphus but reduction has occurred in Zenarchopterus, in which the fins are small, and, apparently independently, in Hemirhamphodon in which fins are absent. A posterior extension of the nucleus over the base of the axoneme is C-shaped and embraces almost the entire circumference of the axoneme in poeciliids but, independently developed, in zenarchopterids is a dorsal plate. Its absence in Hemirhamphodon is computed as a loss. These modifications relative to the aquasperm condition are deduced to have been occasioned by the adoption of internal fertilization. To what extent they are constrained by features of the genome peculiar to poeciliids, zenarchopterids or atherinomorphs or are demanded by minute differences in fertilization biology, or by a combination of the two, is not at present determinable.Abbreviations a: axoneme - as: central axonemal singlet microtubules - ad: axonemal doublets - cc: cytoplasmic canal (periaxonemal space) - cca: centriolar cap - dc: distal centriole - f: flagellum - fi: axonemal fin - m: mitochondrion - n: nucleus - nf: basal nuclear fossa - ps: peri-axonemal cytoplasmic sheath - s: dorsal spur of nucleus - sl: submitochondrial dense layer - sr: satellite rays  相似文献   

10.
Synopsis Testis and ovary structure was examined histologically in seven of the 19 species in the three tribes of the teleost fish family Phallostethidae, series Atherinomorpha. These diminutive species have testes in which spermatogonia are restricted to the distal ends of lobules, a diagnostic character of atherinomorphs. Sperm in the ovarian lumen and chorionic attachment filaments on eggs confirms observations that phallostethids are internally fertilizing and lay fertilized eggs. The immense number of sperm in ovarian cavities means that all, or nearly all, ovulated oocytes will be fertilized. As revealed in histological sections, testicular ducts in most phallostethids examined contain granular secretions that have not been reported in any other atherinomorphs. Species in the tribes Neostethini and Gulaphallini form unique spermatozeugmata that differ from those of other internally fertilizing atherinomorphs examined in that they have sperm nuclei that are oriented towards one side of the sperm bundle. Spermatozeugmata are not formed in species in the tribe Phallostethini. A unique spermatozeugmatum is interpreted as being a diagnostic character of phallostethids that has been lost or modified in phallostethins. Gonads of phallostethids and hypothesized close relatives are posterior and posteroventral to the gut rather than dorsal to the gut, as they are in most other fishes. Museum specimens preserved over sixty-five years ago are as useful for demonstrating gonad histology as are those preserved in the past few years.  相似文献   

11.
The lacertid lizard Lacerta vivipara is one of the few squamate species with two reproductive modes. We present the intraspecific phylogeny obtained from neighbor-joining and maximum-parsimony analyses of the mtDNA cytochrome b sequences for 15 individuals from Slovenian oviparous populations, 34 individuals from western oviparous populations of southern France and northern Spain, 92 specimens from European and Russian viviparous populations, and 3 specimens of the viviparous subspecies L. v. pannonica. The phylogeny indicates that the evolutionary transition from oviparity to viviparity probably occurred once in L. vivipara. The western oviparous group from Spain and southern France is phylogenetically most closely related to the viviparous clade. However, the biarmed W chromosome characterizing the western viviparous populations is an apomorphic character, whereas the uniarmed W chromosome, existing both in the western oviparous populations and in the geographically distant eastern viviparous populations, is a plesiomorphic character. This suggests an eastern origin of viviparity. Various estimates suggest that the oviparous and viviparous clades of L. vivipara split during the Pleistocene. Our results are discussed in the framework of general evolutionary models: the concept of an oviparity–viviparity continuum in squamates, the cold climate model of selection for viviparity in squamates, and the contraction–expansion of ranges in the Pleistocene resulting in allopatric differentiation.  相似文献   

12.
The shift from egg laying to live‐bearing is one of the most well‐studied transitions in evolutionary biology. Few studies, however, have assessed the effect of this transition on morphological evolution. Here, we evaluated the effect of reproductive mode on the morphological evolution of 10 traits, among 108 species of phrynosomatid lizards. We assess whether the requirement for passing shelled eggs through the pelvic girdle has led to morphological constraints in oviparous species and whether long gestation times in viviparous species have led to constraints in locomotor morphology. We fit models to the data that vary both in their tempo (strength and rate of selection) and mode of evolution (Brownian or Ornstein‐Uhlenbeck) and estimates of trait optima. We found that most traits are best fit by a generalized multipeak OU model, suggesting differing trait optima for viviparous vs. oviparous species. Additionally, rates (σ2) of both pelvic girdle and forelimb trait evolution varied with parity; viviparous species had higher rates. Hindlimb traits, however, exhibited no difference in σ2 between parity modes. In a functional context, our results suggest that the passage of shelled eggs constrains the morphology of the pelvic girdle, but we found no evidence of morphological constraint of the locomotor apparatus in viviparous species. Our results are consistent with recent lineage diversification analyses, leading to the conclusion that transitions to viviparity increase both lineage and morphological diversification.  相似文献   

13.
Energy consumption during development has been measured in many oviparous lizards, but not in viviparous lizards in utero. It has always been assumed that energy consumption by embryos of viviparous lizards during development is similar to that of oviparous species. Estimation of energy consumption of viviparous lizards in vivo are confounded by the possible influence of pregnancy on maternal metabolism. Here we separated maternal and embryonic metabolism in measurements of pregnant Eulamprus tympanum throughout pregnancy. Our data support the hypothesis that the energetic cost of development in viviparous lizards (19.8 kJ g−1) is similar to that in oviparous lizards (mean 16.2 kJ g−1), at least for a species with a simple placenta. An increase in maternal metabolism of 29% above that for non-pregnant E. tympanum goes to maintain pregnancy, and represents an important component of the reproductive effort in E. tympanum.  相似文献   

14.
Understanding the factors that drive geographic variation in life history is an important challenge in evolutionary ecology. Here, we analyze what predicts geographic variation in life‐history traits of the common lizard, Zootoca vivipara, which has the globally largest distribution range of all terrestrial reptile species. Variation in body size was predicted by differences in the length of activity season, while we found no effects of environmental temperature per se. Females experiencing relatively short activity season mature at a larger size and remain larger on average than females in populations with relatively long activity seasons. Interpopulation variation in fecundity was largely explained by mean body size of females and reproductive mode, with viviparous populations having larger clutch size than oviparous populations. Finally, body size‐fecundity relationship differs between viviparous and oviparous populations, with relatively lower reproductive investment for a given body size in oviparous populations. While the phylogenetic signal was weak overall, the patterns of variation showed spatial effects, perhaps reflecting genetic divergence or geographic variation in additional biotic and abiotic factors. Our findings emphasize that time constraints imposed by the environment rather than ambient temperature play a major role in shaping life histories in the common lizard. This might be attributed to the fact that lizards can attain their preferred body temperature via behavioral thermoregulation across different thermal environments. Length of activity season, defining the maximum time available for lizards to maintain optimal performance, is thus the main environmental factor constraining growth rate and annual rates of mortality. Our results suggest that this factor may partly explain variation in the extent to which different taxa follow ecogeographic rules.  相似文献   

15.
We describe the histological characteristics of the testis and spermatogenesis of the cave molly Poecilia mexicana, a viviparous teleost inhabiting a sulfur spring cave, Cueva del Azufre, in Tabasco, Southern Mexico. P. mexicana has elongate spermatogonial restricted testes with spermatogonia arranged in the testicular periphery. Germ cell development occurs within spermatocysts. As spermatogenesis proceeds, the spermatocysts move longitudinally from the periphery of the testis to the efferent duct system, where mature spermatozoa are released. The efferent duct system consists of short efferent duct branches connected to a main efferent duct, opened into the genital pore. Spermatogenesis consisted of the following stages: spermatogonia (A and B), spermatocytes (primary and secondary), spermatids, and spermatozoa. The spermatozoa are situated within spermatocysts, with their heads oriented toward the periphery and flagella toward the center. Once in the efferent duct system, mature spermatozoa are packaged as unencapsulated sperm bundles, that is, spermatozeugmata. We suggest that the histological characteristics of the testis and spermatogenesis of P. mexicana from the Cueva del Azufre, and the viviparous condition where the spermatozoa enter in the female without been in the water, have allowed them to invade sulfurous and/or subterranean environments in Southern Mexico, without requiring complex morphofunctional changes in the testis or the spermatogenetic process.  相似文献   

16.
The lizard genus Sceloporus contains both oviparous and viviparous species. The scalaris complex is the only monophyletic group within the genus that includes both reproductive modes, thus it is particularly well suited for studies of the evolution of viviparity. Approximately 874 nucleotides of mtDNA sequence data, collected from 38 specimens, comprising 25 populations of all five recognized species within the group, were used in a phylogenetic analysis of the origin of viviparity. Viviparity appears to have evolved twice in this group: once in S. goldmani, included in a clade formed by a northern group consisting of S. scalaris, S. chaneyi, and S. goldmani, and one more time in S. bicanthalis, included in the southern group formed by S. bicanthalis and S. aeneus. An oviparous population of S. bicanthalis nested within that viviparous clade, indicates that reversal from viviparity to oviparity may be possible. Degree of sequence divergence among several S. bicanthalis individuals pertaining to a population in which both parity modes occur, was no larger between oviparous and viviparous lizards than among viviparous lizards. This suggests that this population is a single species, and it may represent a transition from oviparity to viviparity or vice-versa.  相似文献   

17.
Otolith stable‐oxygen‐isotope composition and microstructure were analysed in order to investigate the vertical habitat shift of deep‐sea cusk eels (Ophidiiformes). Otolith δ18O profiles suggested that both viviparous blind cusk eels and oviparous cusk eels experienced a pelagic larval stage and then settled to the deep‐sea floor over a vertical distance that ranged among individuals from 200 to >1000 m. This result shows that the larvae of viviparous Barathronus maculatus undertake an ontogenetic vertical migration after a period of larval drift that may facilitate their wide distribution on the sea floor.  相似文献   

18.
Pregnant females modify their thermoregulatory behaviour in many species of viviparous (live-bearing) reptiles, typically maintaining higher and more stable body temperatures at this time. Such modifications often have been interpreted as adaptations to viviparity, functioning to accelerate embryonic development and/or modify phenotypic traits of hatchlings. An alternative possibility is that similar maternal thermophily may be widespread also in oviparous species and if so, would be a pre-adaptation (rather than an adaptation) to viviparity. Because eggs are retained in utero for a significant proportion of development even in oviparous reptiles, maternal thermophily might confer similar advantages in oviparous as in viviparous taxa. Experimental trials on montane oviparous scincid lizards (Bassiana duperreyi) support the pre-adaptation hypothesis. First, captive females (both reproductive and non-reproductive) selected higher temperatures than males. Second, experimentally imposing thermal regimes on pregnant females significantly affected their oviposition dates and the phenotypic traits (body shape, running speed) of their hatchlings. Thus, as for many other behavioural correlates of pregnancy in viviparous reptiles, maternal thermophily likely may have already been present in the ancestral oviparous taxa that gave rise to present-day viviparous forms.  相似文献   

19.
Many factors, both environmental and biotic, have been suggested to facilitate or hinder the evolution of viviparity (live-bearing) in reptiles. Viviparity has evolved recently within the Australian scincid lizard Lerista bougainvillii and the species includes oviparous, viviparous, and reproductively intermediate (with prolonged egg retention) populations; thus, it offers an exceptional opportunity to evaluate the validity of these hypotheses. We carried out such tests by (i) comparing environmental conditions over the geographic ranges occupied by oviparous, viviparous, and intermediate populations (to identify possible selective forces for the evolution of viviparity), and (ii) comparing morphological, reproductive and ecological traits of L. bougainvillii with those of other sympatric scincid species (to identify traits that may have predisposed this taxon to the evolution of viviparity). The areas occupied by viviparous L. bougainvillii are significantly colder than those occupied by both their intermediate and oviparous conspecifics, in accord with the “cold-climate” hypothesis for reptilian viviparity. Rainfall is similar over the ranges of the three forms. Climatic unpredictability (as assessed by the magnitude of year-to-year thermal variation) is lower for viviparous animals, in contradiction to published speculations. Comparison with 31 sympatric scincid species showed that L. bougainvillii is not atypical for most of the traits we measured (e.g., body size, clutch size, thermal preferenda and tolerances). However, oviparous L. bougainvillii do display several traits that have been suggested to facilitate the evolution of viviparity. For example, pregnancy does not reduce locomotor ability of females; the lizards are semi-fossorial; even the oviparous females produce only a single clutch of eggs per year; and they ovulate relatively late in summer, so that the time available for incubation is limited.  相似文献   

20.
Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex‐specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south‐western France) exhibited a smaller female size and less female‐biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw‐tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body sizeclimate relationships in intraspecific units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号