首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Recruitment and activation of Raf-1 kinase by nitric oxide-activated Ras   总被引:6,自引:0,他引:6  
Deora AA  Hajjar DP  Lander HM 《Biochemistry》2000,39(32):9901-9908
  相似文献   

3.
Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events.  相似文献   

4.
Using transient overexpression and microinjection approaches, we examined SHPTP2's function in growth factor signaling. Overexpression of catalytically inactive SHPTP2 (PTP2CS) but not catalytically inactive SHPTP1, inhibited mitogen-activated protein (MAP) kinase activation and Elk-1 transactivation following epidermal growth factor (EGF) stimulation of 293 cells. An SHPTP2 mutant with both C-terminal tyrosyl phosphorylation sites converted to phenylalanine (PTP2YF) was also without effect; moreover, PTP2YF rescued PTP2CS-induced inhibition of EGF-induced Elk-1 transactivation. PTP2CS did not inhibit transactivation by activated Ras, suggesting that SHPTP2 acts upstream of or parallel to Ras. Neither PTP2CS nor PTP2YF inhibited platelet-derived growth factor (PDGF)-induced Elk-1 transactivation. Thus, protein-tyrosine phosphatase activity, but not tyrosyl phosphorylation of SHPTP2, is required for the immediate-early responses to EGF but not to PDGF. To determine whether SHPTP2 is required later in the cell cycle, we assessed S-phase entry in NIH 3T3 cells microinjected with anti-SHPTP2 antibodies or with a glutathione S-transferase (GST) fusion protein encoding both SH2 domains (GST-SH2). Microinjection of anti-SHPTP2 antibodies prior to stimulation inhibited EGF- but no PDGF- or serum-induced S-phase entry. Anti-SHPTP2 antibodies or GST-SH2 fusion protein could inhibit EGF-induced S-phase entry for up to 8 h after EGF addition. Although MAP kinase activation was detected shortly after EGF stimulation, no MAP kinase activation was detected around the restriction point. Therefore, SHPTP2 is absolutely required for immediate-early and late events induced by some, but not all, growth factors, and the immediate-early and late signal transduction pathways regulated by SHPTP2 are distinguishable.  相似文献   

5.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

6.
Although Gbetagamma is thought to mediate mitogen-activated protein kinase (MAPK) activation in response to G protein-coupled receptor stimulation, the mechanisms involved in this pathway have not been clearly defined. Phosphoinositide 3-kinase (PI3K) has been proposed as an early intermediate in this process, but its role has remained elusive. We have observed that dominant negative mutants of p110beta, but not of p110gamma, inhibited MAPK stimulation in response to lysophosphatidic acid (LPA). The role of p110beta was located upstream from Ras. To determine which of the lipid or protein kinase activities of p110beta were important for Ras activation, we produced a mutant p110beta lacking the lipid but not the protein kinase activity. This protein displayed a dominant negative activity similar to a kinase-dead mutant, indicating that p110beta lipid kinase activity was essentially involved in Ras activation. In agreement, overexpression of the lipid phosphatase PTEN was found to specifically inhibit Ras stimulation induced by LPA. In addition, we have observed that the PH domain-containing adapter protein Gab1, which is involved in p110beta activation during LPA stimulation, is also implicated in this pathway downstream of p110beta. Indeed, both membrane redistribution and phosphorylation of Gab1 were reduced in the presence of PI3K inhibitors or dominant negative p110beta. Downstream of Gab1, the tyrosine phosphatase SHP2 was found to mediate Ras activation in response to LPA and to be recruited through PI3K and Gab1, because transfection of Gab1 mutant deficient for SHP2 binding inhibited Ras activation without interfering with PI3K activation. We conclude that LPA-induced Ras activation is mediated by a p110beta/Gab1/SHP2 pathway. Moreover, we present data indicating that p110beta is effectively the target of betagamma in this pathway, suggesting that the p110beta/Gab1/SHP2 pathway provides a novel link between betagamma and Ras by integrating two early events of LPA signaling, i.e. Gbetagamma release and tyrosine kinase receptor transactivation.  相似文献   

7.
Tyrosine kinase activity of v-Src from Rous sarcoma virus (RSV) inhibits the differentiation of quail myoblasts. To clarify the inhibitory mechanism, we focused on the signaling pathways from v-Src. When the activation of the Ras/MAP (mitogen-activated protein) kinase pathway was inhibited by a dominant-negative mutant of Ras or PD98059, a specific inhibitor of p42 MAP kinase kinase, differentiation was restored; muscle specific proteins were expressed and myotubes formed even under active conditions of v-Src. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (P13-kinase), showed no effects on the inhibition by v-Src. These findings suggest that v-Src activates the Ras/MAP kinase signaling pathway, but not the P13-kinase pathway, and inhibits the differentiation. However, the myotubes derived from the dominant-negative Ras did not form actin fibers, suggesting that myofibril assembly is regulated by other pathway(s) from v-Src.  相似文献   

8.
Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3′,5′-cyclic monophosphate and 8-bromoguanosine-3′,5′-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Iβ expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by phosphorylating c-Raf kinase on Ser43 and thereby inhibiting its activation and (ii) by inducing MAP kinase phosphatase 1 expression.  相似文献   

9.
The Src tyrosine kinase is necessary for activation of extracellular signal-regulated kinases (ERKs) by the beta-adrenergic receptor agonist, isoproterenol. In this study, we examined the role of Src in the stimulation of two small G proteins, Ras and Rap1, that have been implicated in isoproterenol's signaling to ERKs. We demonstrate that the activation of isoproterenol of both Rap1 and Ras requires Src. In HEK293 cells, isoproterenol activates Rap1, stimulates Rap1 association with B-Raf, and activates ERKs, all via PKA. In contrast, the activation by isoproterenol of Ras requires Gbetagamma subunits, is independent of PKA, and results in the phosphoinositol 3-kinase-dependent activation of AKT. Interestingly, beta-adrenergic stimulation of both Rap1 and ERKs, but not Ras and AKT, can be blocked by a Src mutant (SrcS17A) that is incapable of being phosphorylated and activated by PKA. Furthermore, a Src mutant (SrcS17D), which mimics PKA phosphorylation at serine 17, stimulates Rap1 activation, Rap1/B-Raf association, and ERK activation but does not stimulate Ras or AKT. These data suggest that Rap1 activation, but not that of Ras, is mediated through the direct phosphorylation of Src by PKA. We propose that the beta(2)-adrenergic receptor activates Src via two independent mechanisms to mediate distinct signaling pathways, one through Galpha(s) to Rap1 and ERKs and the other through Gbetagamma to Ras and AKT.  相似文献   

10.
Ras plays a key role in regulating cellular proliferation, differentiation, and transformation. Raf is the major effector of Ras in the Ras > Raf > Mek > extracellular signal-activated kinase (ERK) cascade. A second effector is phosphoinositide 3-OH kinase (PI 3-kinase), which, in turn, activates the small G protein Rac. Rac also has multiple effectors, one of which is the serine threonine kinase Pak (p65(Pak)). Here we show that Ras, but not Raf, activates Pak1 in cotransfection assays of Rat-1 cells but not NIH 3T3 cells. We tested agents that activate or block specific components downstream of Ras and demonstrate a Ras > PI 3-kinase > Rac/Cdc42 > Pak signal. Although these studies suggest that the signal from Ras through PI 3-kinase is sufficient to activate Pak, additional studies suggested that other effectors contribute to Pak activation. RasV12S35 and RasV12G37, two effector mutant proteins which fail to activate PI 3-kinase, did not activate Pak when tested alone but activated Pak when they were cotransfected. Similarly, RacV12H40, an effector mutant that does not bind Pak, and Rho both cooperated with Raf to activate Pak. A dominant negative Rho mutant also inhibited Ras activation of Pak. All combinations of Rac/Raf and Ras/Raf and Rho/Raf effector mutants that transform cells cooperatively stimulated ERK. Cooperation was Pak dependent, since all combinations were inhibited by kinase-deficient Pak mutants in both transformation assays and ERK activation assays. These data suggest that other Ras effectors can collaborate with PI 3-kinase and with each other to activate Pak. Furthermore, the strong correlation between Pak activation and cooperative transformation suggests that Pak activation is necessary, although not sufficient, for cooperative transformation of Rat-1 fibroblasts by Ras, Rac, and Rho.  相似文献   

11.
The role of the Grb2-SOS complex in insulin signal transduction was investigated with a deletion mutant of mSOS1 that lacks the guanine nucleotide exchange domain of the wild-type protein. Cells over-expressing either wild-type (CHO-IR/SOS cells) or mutant (CHO-IR/delta SOS cells) mSOS1 were established by transfection of Chinese hamster ovary cells that express human insulin receptors (CHO-IR cells) with the appropriate expression plasmid. The mutant mSOS1 protein did not contain the guanine nucleotide exchange activity in vitro and associated with Grb2 both in vivo and in vitro. In both CHO-IR and CHO-IR/SOS cells, insulin rapidly stimulated the formation of GTP-bound Ras and the phosphorylation of mitogen-activated protein (MAP) kinase; both these effects of insulin were markedly inhibited in CHO-IR/delta SOS cells. Insulin-induced glycogen synthase and 70-kDa S6 kinase activities were not affected by expression of either wild-type or mutant mSOS1. These results show that the mutant mSOS1 acts in a dominant-negative manner and suggest that the Grb2-SOS complex mediates, at least in part, insulin-induced activation of Ras in intact cells. The data also indicate that Ras activation is not required for insulin-induced stimulation of glycogen synthase and 70-kDa S6 kinase.  相似文献   

12.
13.
Among the mechanisms by which the Ras oncogene induces cellular transformation, Ras activates the mitogen-activated protein kinase (MAPK or ERK) cascade and a related cascade leading to activation of Jun kinase (JNK or SAPK). JNK is additionally regulated by the Ras-related G proteins Rac and Cdc42. Ras also regulates the actin cytoskeleton through an incompletely elucidated Rac-dependent mechanism. A candidate for the physiological effector for both JNK and actin regulation by Rac and Cdc42 is the serine/threonine kinase Pak (p65pak). We show here that expression of a catalytically inactive mutant Pak, Pak1(R299), inhibits Ras transformation of Rat-1 fibroblasts but not of NIH 3T3 cells. Typically, 90 to 95% fewer transformed colonies were observed in cotransfection assays with Rat-1 cells. Pak1(R299) did not inhibit transformation by the Raf oncogene, indicating that inhibition was specific for Ras. Furthermore, Rat-1 cell lines expressing Pak1(R299) were highly resistant to Ras transformation, while cells expressing wild-type Pak1 were efficiently transformed by Ras. Pak1(L83,L86,R299), a mutant that fails to bind either Rac or Cdc42, also inhibited Ras transformation. Rac and Ras activation of JNK was inhibited by Pak1(R299) but not by Pak1(L83,L86,R299). Ras activation of ERK was inhibited by both Pak1(R299) and Pak1(L83,L86,R299), while neither mutant inhibited Raf activation of ERK. These results suggest that Pak1 interacts with components essential for Ras transformation and that inhibition can be uncoupled from JNK but not ERK signaling.  相似文献   

14.
p21ras plays an important role in the control of cell proliferation. The molecular mechanisms implicated are unknown. We report that the injection of oncogenic Lys12 Ras into Xenopus laevis oocytes promoted the activation of mitogen-activated protein kinase (MAP kinase) after a lag of about 90 min. MAP kinase activity was 10-fold higher 4 h after injection of oncogenic Lys12 Ras than after injection of nononcogenic Gly12 Ras. The stimulated MAP kinase activity remained at a plateau for at least 18 h. Maximal stimulation was obtained with 5 ng of Lys12 Ras, which is similar to the amount that elicits germinal vesicle breakdown. DEAE-Sephacel chromatography of extracts from Lys12 Ras-injected oocytes showed one peak of MAP kinase. MAP kinase activation by Lys12 Ras was associated with tyrosine phosphorylation of MAP kinase (p42). As previously shown, the S6-kinase II (likely pp90rsk), which is activated in vitro by MAP kinase, was also activated by oncogenic Lys12 Ras. Lys12 Ras with an additional mutation (Glu38) in the effector region that binds GTPase-activating protein (GAP) did not promote MAP kinase or S6 kinase activations. Thus, GAP may be involved downstream to Ras in these activation processes. Our results indicate that the Ras-GAP complex promotes MAP kinase activation in oocytes. This supports the idea that Ras-GAP controls MAP kinase, a kinase implicated in the action of various stimuli.  相似文献   

15.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

16.
G protein-coupled receptors can induce cellular proliferation by stimulating the mitogen-activated protein (MAP) kinase cascade. Heterotrimeric G proteins are composed of both alpha and betagamma subunits that can signal independently to diverse intracellular signaling pathways including those that activate MAP kinases. In this study, we examined the ability of isoproterenol, an agonist of the beta(2)-adrenergic receptor (beta(2)AR), to stimulate extracellular signal-regulated kinases (ERKs). Using HEK293 cells, which express endogenous beta(2)AR, we show that isoproterenol stimulates ERKs via beta(2)AR. This action of isoproterenol requires cAMP-dependent protein kinase and is insensitive to pertussis toxin, suggesting that Galpha(s) activation of cAMP-dependent protein kinase is required. Interestingly, beta(2)AR activates both the small G proteins Rap1 and Ras, but only Rap1 is capable of coupling to Raf isoforms. beta(2)AR inhibits the Ras-dependent activation of both Raf isoforms Raf-1 and B-Raf, whereas Rap1 activation by isoproterenol recruits and activates B-Raf. beta(2)AR activation of ERKs is not blocked by expression of RasN17, an interfering mutant of Ras, but is blocked by expression of either RapN17 or Rap1GAP1, both of which interfere with Rap1 signaling. We propose that isoproterenol can activate ERKs via Rap1 and B-Raf in these cells.  相似文献   

17.
Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first extensive characterization of this functionally distinct class of DN Ras inhibitor proteins.  相似文献   

18.
19.
Activation of the protein kinase Raf-1 is a complex process involving association with the GTP-bound form of Ras (Ras-GTP), membrane translocation and both serine/threonine and tyrosine phosphorylation (reviewed in [1]). We have reported previously that p21-activated kinase 3 (Pak3) upregulates Raf-1 through direct phosphorylation on Ser338 [2]. Here, we investigated the origin of the signal for Pak-mediated Raf-1 activation by examining the role of the small GTPase Cdc42, Rac and Ras, and of phosphatidylinositol (PI) 3-kinase. Pak3 acted synergistically with either Cdc42V12 or Rac1V12 to stimulate the activities of Raf-1, Raf-CX, a membrane-localized Raf-1 mutant, and Raf-1 mutants defective in Ras binding. Raf-1 mutants defective in Ras binding were also readily activated by RasV12. This indirect activation of Raf-1 by Ras was blocked by a dominant-negative mutant of Pak, implicating an alternative Ras effector pathway in Pak-mediated Raf-1 activation. Subsequently, we show that Pak-mediated Raf-1 activation is upregulated by both RasV12C40, a selective activator of PI 3-kinase, and p110-CX, a constitutively active PI 3-kinase. In addition, p85Delta, a mutant of the PI 3-kinase regulatory subunit, inhibited the stimulated activity of Raf-1. Pharmacological inhibitors of PI 3-kinase also blocked both activation and Ser338 phosphorylation of Raf-1 induced by epidermal growth factor (EGF). Thus, Raf-1 activation by Ras is achieved through a combination of both physical interaction and indirect mechanisms involving the activation of a second Ras effector, PI 3-kinase, which directs Pak-mediated regulatory phosphorylation of Raf-1.  相似文献   

20.
Differential Effects of Protein Kinase A on Ras Effector Pathways   总被引:4,自引:3,他引:1       下载免费PDF全文
Ras mutants with the ability to interact with different effectors have played a critical role in the identification of Ras-dependent signaling pathways. We used two mutants, RasS35 and RasG37, which differ in their ability to bind Raf-1, to examine Ras-dependent signaling in thyroid epithelial cells. Wistar rat thyroid cells are dependent upon thyrotropin (TSH) for growth. Although TSH-stimulated mitogenesis requires Ras, TSH activates protein kinase A (PKA) and downregulates signaling through Raf and the mitogen-activated protein kinase (MAPK) cascade. Cells expressing RasS35, a mutant which binds Raf, or RasG37, a mutant which binds RalGDS, exhibited TSH-independent proliferation. RasS35 stimulated morphological transformation and anchorage-independent growth. RasG37 stimulated proliferation but not transformation as measured by these indices. TSH exerted markedly different effects on the Ras mutants and transiently repressed MAPK phosphorylation in RasS35-expressing cells. In contrast, TSH stimulated MAPK phosphorylation and growth in cells expressing RasG37. The Ras mutants, in turn, exerted differential effects on TSH signaling. RasS35 abolished TSH-stimulated changes in cell morphology and thyroglobulin expression, while RasG37 had no effect on these activities. Together, the data indicate that cross talk between Ras and PKA discriminates between distinct Ras effector pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号