首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A M Segall  S D Goodman    H A Nash 《The EMBO journal》1994,13(19):4536-4548
Integration host factor (IHF) is required in lambda site-specific recombination to deform the DNA substrates into conformations active for recombination. HU, a homolog of IHF, can also deform DNA but binds without any apparent sequence specificity. We demonstrate that HU can replace IHF by cooperating with the recombinase protein, integrase, to generate a stable and specific complex with electrophoretic mobility and biochemical activity very close to the complex formed by IHF and integrase. The eukaryotic HMG1 and HMG2 proteins differ entirely in structure from HU but they also bind DNA non-specifically and induce or stabilize deformed DNA. We show that the eukaryotic HMG1 and HMG2 proteins cooperate with integrase at least as well as does HU to make a defined structure. We also find that the eukaryotic core histone dimer H2A-H2B can replace IHF, suggesting that the histone dimer is functional outside the context of a nucleosome. HU and the HMG proteins not only contribute to the formation of stable complexes, but they can at least partially replace IHF for the integrative and excisive recombination reactions. These results, together with our analysis of nucleoprotein complexes made with damaged recombination sites, lead us to conclude that the cooperation between HU and integrase does not depend on protein-protein contacts. Rather, cooperation is manifested through building of higher order structures and depends on the capacity of the non-specific DNA binding proteins to bend DNA. While all these non-specific binding proteins appear to fulfil the same bending function, they do so with different efficiencies. This probably reflects subtle structural differences between the assembled complexes.  相似文献   

2.
IHF and HU are small basic proteins of eubacteria that bind as homodimers to double-stranded DNA and bend the duplex to promote architectures required for gene regulation. These architectural proteins share a common alpha/beta fold but exhibit different nucleic acid binding surfaces and distinct functional roles. With respect to DNA-binding specificity, for example, IHF is sequence specific, while HU is not. We have employed Raman difference spectroscopy and gel mobility assays to characterize the molecular mechanisms underlying such differences in DNA recognition. Parallel studies of solution complexes of IHF and HU with the same DNA nonadecamer (5' --> 3' sequence: TC TAAGTAGTTGATTCATA, where the phage lambda H1 consensus sequence of IHF is underlined) show the following. (i) The structure of the targeted DNA site is altered much more dramatically by IHF than by HU binding. (ii) In the IHF complex, the structural perturbations encompass both the sugar-phosphate backbone and the bases of the consensus sequence, whereas only the DNA backbone is altered by HU binding. (iii) In the presence of excess protein, complexes of order higher than 1 dimer per duplex are detected for HU:DNA, though not for IHF:DNA. The results differentiate structural motifs of IHF:DNA and HU:DNA solution complexes, provide Raman signatures of prokaryotic sequence-specific and nonspecific recognition, and suggest that the architectural role of HU may involve the capability to recruit additional binding partners to even relatively short DNA sequences.  相似文献   

3.
4.
5.
The Escherichia coli protein HU functions as an architectural DNA-binding protein by facilitating DNA looping or bending to form multiprotein complexes. Although HU does not recognize a specific DNA sequence, site-specific binding to a number of discontinuous, looped, or bent DNA substrates has been observed. In this study UV resonance Raman (UVRR) spectroscopy is used to identify structural elements associated with low- and high-affinity binding by examining three different HU-DNA complexes. UVRR spectra obtained with an excitation wavelength of 210 nm, which preferentially enhances protein backbone amide vibrations, indicate that HU secondary structure content increases and the protein structure becomes more rigid upon binding to DNA. The increase in alpha-helical content is attributed to the C-terminal helix, which interacts with the DNA and may play a role in binding affinity and specificity. UVRR spectra obtained with a 215 nm excitation wavelength demonstrate that Pro mode intensity at 1455 cm(-1) decreases upon complex formation. This intensity decrease is attributed to the intercalation of Pro residues between DNA base pairs to induce a bend in the DNA, as has been observed previously in the IHF-DNA and HU-DNA cocrystal structures. DNA vibrational modes are also indicative of significant base unstacking and opening of the minor groove upon protein binding, consistent with bending and distortion of the DNA. In all three complexes, A-DNA conformational features are indicated by deoxyribose-phosphate backbone modes. These and other results suggest that protein-induced bending plays an important role in HU site-specific binding and supports a model of a mutually induced fit.  相似文献   

6.
7.
Interaction of integration host factor (IHF) with linear DNA fragments containing the narG promoter region induced an apparent sharp bend in the DNA centered at the IHF-binding site. Binding of NARL-P to two sites adjacent to the IHF site did not induce bending or modify the apparent bending induced by IHF.  相似文献   

8.
9.
The energetic cost of bending short segments of DNA is very high. This bending is critical for the packaging of DNA and is exploited to regulate many cellular processes. In prokaryotes, IHF and HU are key architectural proteins present at high concentrations. New protein-DNA co-crystal structures, and the adaptation of advanced biophysical and biochemical techniques have led to an improved understanding of how these proteins interact with DNA. These techniques include time-resolved synchrotron X-ray footprinting, differential scanning calorimetry, isothermal titration calorimetry and single-molecule experiments.  相似文献   

10.
Benevides JM  Serban D  Thomas GJ 《Biochemistry》2006,45(16):5359-5366
HU is a small DNA-binding protein of eubacteria that is believed to induce or stabilize bending of the double helix and mediate nucleoid compaction in vivo. Although HU does not bind preferentially to specific DNA sequences, it is known to have high affinity for DNA sites containing structural anomalies, such as unpaired or mismatched bases, nicks, and four-way junctions. We have employed Raman spectroscopy to further investigate the structural basis of HU-DNA recognition in solution. Experiments were carried out on the homodimeric HU protein of Bacillus stearothermophilus (HUBst) and a 222-bp DNA fragment, which was isolated in linear (DNA(L222)) and circular (DNA(C222)) forms. In the absence of bound HUBst the Raman signatures of DNA(L222) and DNA(C222) are nearly superimposable, indicating that circularization produces no substantial change in the local B-DNA conformation. Conversely, the Raman signatures of DNA(L222) and DNA(C222) are perturbed significantly and specifically by HUBst binding. The HUBst-induced perturbations are markedly greater for the circularized DNA target. These results support an opportunistic molecular mechanism, in which HU binding is facilitated by intrinsic nonlinearity or flexibility in the DNA target. We propose that DNA segments which are bent or predisposed toward bending provide the high-affinity sites for HU attachment and nucleoid condensation. This model is consistent with the wide range of DNA bending angles reported in crystal structures of HU-DNA complexes.  相似文献   

11.
Bending of DNA is a prerequisite of site-specific recombination and gene expression in many regulatory systems involving the assembly of specific nucleoprotein complexes. We have investigated how the uniquely clustered Dam methylase sites, GATCs, in the origin of Escherichia coli replication ( oriC  ) and their methylation status modulate the geometry of oriC and its interaction with architectural proteins, such as integration host factor (IHF), factor for inversion stimulation (Fis) and DnaA initiator protein. We note that 3 of the 11 GATC sites at oriC are strategically positioned within the IHF protected region. Methylation of the GATCs enhances IHF binding and alters the IHF-induced bend at oriC . GATC motifs also contribute to intrinsic DNA curvature at oriC and the degree of bending is modulated by methylation. The IHF-induced bend at oriC is further modified by Fis protein and IHF affinity for its binding site may be impaired by protein(s) binding to GATCs within the IHF site. Thus, GATC sites at oriC affect the DNA conformation and GATCs, in conjunction with the protein-induced bends, are critical cis -acting elements in specifying proper juxtapositioning of initiation factors in the early steps of DNA replication.  相似文献   

12.
13.
Being capable of characterizing DNA local bending is essential to understand thoroughly many biological processes because they involve a local bending of the double helix axis, either intrinsic to the sequence or induced by the binding of proteins. Developing a method to measure DNA bend angles that does not perturb the conformation of the DNA itself or the DNA-protein complex is a challenging task. Here, we propose a joint theory-experiment high-throughput approach to rigorously measure such bend angles using the Tethered Particle Motion (TPM) technique. By carefully modeling the TPM geometry, we propose a simple formula based on a kinked Worm-Like Chain model to extract the bend angle from TPM measurements. Using constructs made of 575 base-pair DNAs with in-phase assemblies of one to seven 6A-tracts, we find that the sequence CA6CGG induces a bend angle of 19° ± 4°. Our method is successfully compared to more theoretically complex or experimentally invasive ones such as cyclization, NMR, FRET or AFM. We further apply our procedure to TPM measurements from the literature and demonstrate that the angles of bends induced by proteins, such as Integration Host Factor (IHF) can be reliably evaluated as well.  相似文献   

14.
A protein structural motif that bends DNA   总被引:25,自引:0,他引:25  
  相似文献   

15.
The genome of the Lyme disease-causing spirochete Borrelia burgdorferi encodes only a single polypeptide from the integration host factor (IHF)/HU or 'DNABII' family of nucleoid-associated proteins - Hbb. DNABII proteins induce large bends in DNA and serve as architectural factors in a variety of prokaryotic cellular processes. We have solved the crystal structure of an Hbb-DNA complex in which the DNA is bent by over 180 degrees . We find that like IHF, Hbb relies exclusively on indirect readout to recognize its cognate site. Additional binding studies show that the sequence preferences of Hbb are related to, yet distinct from those of IHF. Defining these binding characteristics may help to uncover additional roles for Hbb in Borrelia DNA metabolism as well as further our understanding of the mechanism of indirect readout.  相似文献   

16.
Escherichia coli integration host factor (IHF) is a small basic protein that is required for efficient integrative recombination of bacteriophage lambda. IHF binds specifically to sequences within attP, the site in bacteriophage lambda that undergoes recombination. It has been suggested that the binding of IHF creates bends in DNA so as to help attP condense into a compact structure that is activated for recombination. In this work we show that IHF binding to either of two sites found within attP does indeed produce bending of DNA. In contrast, the other recombination protein needed for integrative recombination, Int, does not appreciably bend the DNA to which it is bound. In agreement with the proposal that IHF bending is important for creating a condensed attP, bending by IHF persists in the presence of bound Int. Our conclusions about protein-directed bends in DNA are based on the study of the electrophoretic mobility of a set of permuted DNA fragments in the presence or absence of IHF and/or Int. To facilitate this study, we have constructed a novel vector that simplifies the generation of permuted fragments. This vector should be useful in studying the bending of other DNA sequences by specific binding proteins.  相似文献   

17.
Prokaryotic HU and eukaryotic HMG1: a kinked relationship   总被引:10,自引:1,他引:9  
  相似文献   

18.
Dynamics of transfer RNAs analyzed by normal mode calculation.   总被引:2,自引:0,他引:2       下载免费PDF全文
Normal mode calculation is applied to tRNAPhe and tRNAAsp, and their structural and vibrational aspects are analyzed. Dihedral angles along the phosphate-ribose backbone (alpha, beta, gamma, epsilon, zeta) and dihedral angles of glycosyl bonds (chi) are selected as movable parameters. The calculated displacement of each atom agrees with experimental data. In modes with frequencies higher than 130 cm-1, the motions are localized around each stem and the elbow region of the L-shape. On the other hand, collective motions such as bending or twisting of arms are seen in modes with lower frequencies. Hinge axes and bend angles are calculated without prior knowledge. Movements in modes with very low frequencies are combinations of hinge bending motions with various hinge axes and bend angles. The thermal fluctuations of dihedral angles well reflect the structural characters of transfer RNAs. There are some dihedral angles of nucleotides located around the elbow region of L-shape, which fluctuate about five to six times more than the average value. Nucleotides in the position seem to be influential in the dynamics of the entire structure. The normal mode calculation seems to provide much information for the study of conformational changes of transfer RNAs induced by aminoacyl-tRNA synthetase or codon during molecular recognition.  相似文献   

19.
Selective DNA bending by a variety of bZIP proteins.   总被引:19,自引:4,他引:15       下载免费PDF全文
We have investigated DNA bending by bZIP family proteins that can bind to the AP-1 site. DNA bending is widespread, although not universal, among members of this family. Different bZIP protein dimers induced distinct DNA bends. The DNA bend angles ranged from virtually 0 to greater than 40 degrees as measured by phasing analysis and were oriented toward both the major and the minor grooves at the center of the AP-1 site. The DNA bends induced by the various heterodimeric complexes suggested that each component of the complex induced an independent DNA bend as previously shown for Fos and Jun. The Fos-related proteins Fra1 and Fra2 bent DNA in the same orientation as Fos but induced smaller DNA bend angles. ATF2 also bent DNA toward the minor groove in heterodimers formed with Fos, Fra2, and Jun. CREB and ATF1, which favor binding to the CRE site, did not induce significant DNA bending. Zta, which is a divergent member of the bZIP family, bent DNA toward the major groove. A variety of DNA structures can therefore be induced at the AP-1 site through combinatorial interactions between different bZIP family proteins. This diversity of DNA structures may contribute to regulatory specificity among the plethora of proteins that can bind to the AP-1 site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号