首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to evaluate liposomes as vehicle for oral vaccines the characterization and stability of polymerized and non-polymerized liposomes were examined. Mixtures of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3 phosphocholine) (DC8,9PC) with saturated 1,2-dimiristoyl-sn-glycero-3-phosphocholine in molar ratio 1:1 were used. Saturated and non-saturated lipids were combined to give a chemically modified membrane by UV polymerization derived from DC8,9PC. Characterization was carried out by electronic microscopy, differential scanning calorimetry (DSC) and by hydrophobicity factor (HF). The stability towards the digestive tract (including saliva): acidic solutions, bile and pancreatin are compared to buffer pH 7.4, measuring the release of Glucose-6-phosphate or bovine plasma albumin entrapment. The polymerized liposomes showed further augmentation of the HF and the size. DSC showed phase separation and lower Tt if compared to data obtained for DC8,9PC. The HF, as main factor is discussed in relation to in vitro stability, suggesting that polymerized and non-polymerized liposomes would serve effectively as an oral delivery vehicle.  相似文献   

2.
3.
4.
5.
The synthesis of RNA chains from 3′,5′-cAMP and 3′,5′-cGMP was observed. The RNA chains formed in water, at moderate temperatures (40–90 °C), in the absence of enzymes or inorganic catalysts. As determined by RNase analyses, the bonds formed were canonical 3′,5′-phosphodiester bonds. The polymerizations are based on two reactions not previously described: 1) oligomerization of 3′, 5′-cGMP to ∼25-nucleotide-long RNA molecules, and of 3′,5′-cAMP to 4- to 8-nucleotide-long molecules. Oligonucleotide A molecules were further extended by reciprocal terminal ligation to yield RNA molecules up to >120 nucleotides long and 2) chain extension by terminal ligation of newly polymerized products of 3′,5′-cGMP on preformed oligonucleotides. The enzyme- and template-independent synthesis of long oligomers in water from prebiotically affordable precursors approaches the concept of spontaneous generation of (pre)genetic information.  相似文献   

6.
Reactive oxygen species are known to participate in the regulation of intracellular signaling pathways, including activation of NF-κB. Recent studies have indicated that increases in intracellular concentrations of hydrogen peroxide (H2O2) have anti-inflammatory effects in neutrophils, including inhibition of the degradation of IκBα after TLR4 engagement. In the present experiments, we found that culture of lipopolysaccharide-stimulated neutrophils and HEK 293 cells with H2O2 resulted in diminished ubiquitination of IκBα and decreased SCFβ-TrCP ubiquitin ligase activity. Exposure of neutrophils or HEK 293 cells to H2O2 was associated with reduced binding between phosphorylated IκBα and SCFβ-TrCP but no change in the composition of the SCFβ-TrCP complex. Lipopolysaccharide-induced SCFβ-TrCP ubiquitin ligase activity as well as binding of β-TrCP to phosphorylated IκBα was decreased in the lungs of acatalasemic mice and mice treated with the catalase inhibitor aminotriazole, situations in which intracellular concentrations of H2O2 are increased. Exposure to H2O2 resulted in oxidative modification of cysteine residues in β-TrCP. Cysteine 308 in Blade 1 of the β-TrCP β-propeller region was found to be required for maximal binding between β-TrCP and phosphorylated IκBα. These findings suggest that the anti-inflammatory effects of H2O2 may result from its ability to decrease ubiquitination as well as subsequent degradation of IκBα through inhibiting the association between IκBα and SCFβ-TrCP.  相似文献   

7.
Stability, ease of production, and storage convenience were addressed for polymerized vesicles composed of 1,2-bis(trideca-12-ynoyl)-sn-glycero-3-phosphocholine. The following vesicle properties were investigated before and after polymerization: size, shape, lamellarity, dispersity, degree of polymerization, membrane fluidity, and structural stability. A fairly monodisperse, unilamellar sub-micron vesicle suspension undergoes nearly complete polymerization of the chain-terminus acetylenic to polyacetylenic conversion as monitored by Fourier transform infrared spectroscopy. (1)H nuclear magnetic resonance spectroscopy and thin layer chromatography provide additional evidence for extensive lipid polymerization. Using differential scanning calorimetry, a gel/liquid transition was not observed for either polymerized or non-polymerized vesicles within the temperature range of 5-65 degrees C. These polymerized vesicles remained structurally stable and suspended for months at room temperature. However, vesicle size did decrease with increasing degree of polymerization. Polymerized vesicles remained spherical but decreased in size by 15% when subjected to 52 wt.% aqueous ethanol and did not change significantly in size and dispersity after a freeze-dry/resuspend cycle.  相似文献   

8.
Cyclin G2 (CycG2) and Cyclin G1 (CycG1), two members of the Cyclin G subfamily, share high amino acid homology in their Cyclin G boxes. Functionally, they play a common role as association partners of the B′γ subunit of protein phosphatase 2A (PP2A) and regulate PP2A function, and their expression is increased following DNA damage. However, whether or not CycG1 and CycG2 have distinct roles during the cellular DNA damage response has remained unclear. Here, we report that CycG2, but not CycG1, co-localized with promyelocytic leukemia (PML) and γH2AX, forming foci following ionizing radiation (IR), suggesting that CycG2 is recruited to sites of DNA repair and that CycG1 and CycG2 have distinct functions. PML failed to localize to nuclear foci when CycG2 was depleted, and vice versa. This suggests that PML and CycG2 mutually influence each other’s functions following IR. Furthermore, we generated CycG2-knockout (Ccng2−/−) mice to investigate the functions of CycG2. These mice were born healthy and developed normally. However, CycG2-deficient mouse embryonic fibroblasts displayed an abnormal response to IR. Dephosphorylation of γH2AX and checkpoint kinase 2 following IR was delayed in Ccng2−/− cells, suggesting that DNA damage repair may be perturbed in the absence of CycG2. Although knockdown of B′γ in wild-type cells also delayed dephosphorylation of γH2AX, knockdown of B′γ in Ccng2−/− cells prolonged this delay, suggesting that CycG2 cooperates with B′γ to dephosphorylate γH2AX. Taken together, we conclude that CycG2 is localized at DNA repair foci following DNA damage, and that CycG2 regulates the dephosphorylation of several factors necessary for DNA repair.  相似文献   

9.
A method for estimating the proportions of ‘A’ and ‘B’ polymorphs comprising a sample of ‘C’ type starch is proposed which uses established experimental techniques with commercially available spreadsheet and X-ray analysis software. Waxy maize, potato and smooth pea starches were used to provide X-ray diffraction patterns characteristic of the ‘A’, ‘B’ and ‘C’ starch polymorphs. Samples of amorphous starches were also prepared. The method initially involved subtraction of the amorphous phase and instrumental background from the X-ray diffraction patterns of each starch sample using the spreadsheet program, Lotus 1-2-3. The remainder of the pattern, representing the crystalline portion of the starch sample, was then analysed by profile fitting to elucidate the positions and areas of individual diffraction peaks. The ratio of the total peak area to the areas under peaks characteristic of ‘A’ and ‘B’ type starches, respectively, were used to calculate the relative proportions of these polymorphs in smooth pea starch. These proportions were found to be 56±3% ‘A’ polymorph to 44±3% ‘B’ polymorph. A ‘C’ type pattern was constructed by using Lotus 1-2-3 to combine diffraction patterns from the crystalline portions of ‘A’ and ‘B’ type starches in the proportions given above. Polymorph patterns were obtained by manipulation of the diffraction patterns from the crystalline portions of starches using Lotus 1-2-3. An ‘A’ type pattern was obtained by subtraction of a ‘B’ type pattern from that of a ‘C’ type. Similarly, a ‘B’ type pattern was obtained by subtraction of an ‘A’ type pattern from that of a ‘C’ type.  相似文献   

10.

Background

The Zimbabwean national prevention of mother-to-child HIV transmission (PMTCT) program provided primarily single-dose nevirapine (sdNVP) from 2002–2009 and is currently replacing sdNVP with more effective antiretroviral (ARV) regimens.

Methods

Published HIV and PMTCT models, with local trial and programmatic data, were used to simulate a cohort of HIV-infected, pregnant/breastfeeding women in Zimbabwe (mean age 24.0 years, mean CD4 451 cells/µL). We compared five PMTCT regimens at a fixed level of PMTCT medication uptake: 1) no antenatal ARVs (comparator); 2) sdNVP; 3) WHO 2010 guidelines using “Option A” (zidovudine during pregnancy/infant NVP during breastfeeding for women without advanced HIV disease; lifelong 3-drug antiretroviral therapy (ART) for women with advanced disease); 4) WHO “Option B” (ART during pregnancy/breastfeeding without advanced disease; lifelong ART with advanced disease); and 5) “Option B+:” lifelong ART for all pregnant/breastfeeding, HIV-infected women. Pediatric (4–6 week and 18-month infection risk, 2-year survival) and maternal (2- and 5-year survival, life expectancy from delivery) outcomes were projected.

Results

Eighteen-month pediatric infection risks ranged from 25.8% (no antenatal ARVs) to 10.9% (Options B/B+). Although maternal short-term outcomes (2- and 5-year survival) varied only slightly by regimen, maternal life expectancy was reduced after receipt of sdNVP (13.8 years) or Option B (13.9 years) compared to no antenatal ARVs (14.0 years), Option A (14.0 years), or Option B+ (14.5 years).

Conclusions

Replacement of sdNVP with currently recommended regimens for PMTCT (WHO Options A, B, or B+) is necessary to reduce infant HIV infection risk in Zimbabwe. The planned transition to Option A may also improve both pediatric and maternal outcomes.  相似文献   

11.
12.
Dansyl-labeled tetrapeptide Gly-His-Arg-Pro which mimics the central fibrin polymerization site was used to investigate its binding to a number of fibrinogen fragments containing different numbers of domains. The tetrapeptide was found to bind to fragments DH(95 kDa), DL(82 kDa) and DY(63 kDa) but not to the TSD(28 kDa) fragment. The DY fragment differs from the TSD by the presence of β and βC domains. Therefore these domains, which are formed by the C-terminal part of the β chain, possess a polymerization site complementary to the Gly-His-Arg containing counterpart.  相似文献   

13.
Rat fibrinogen was purified from rat plasma by using lysine–Sepharose chromatography, repeated precipitation with 25%-satd. (NH4)2SO4 and gel chromatography on Sepharose 6B. To minimize proteolytic activity, rats were injected intravenously with Trasylol before bleeding and the collected blood was treated with Trasylol and di-isopropyl phosphorofluoridate. A 95%-clottable preparation was obtained in 70–75% yield; it proved to be free of factor XIII and plasminogen. It showed a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and on disc electrophoresis in 8m-urea. Alanine was the only detectable N-terminal amino acid. After reduction and modification of the thiol groups, the material could be separated into three distinct chains (Aα, Bβ and γ) by pore-limit polyacrylamide slab-gel electrophoresis in the presence of sodium dodecyl sulphate. The amino acid compositions of the whole fibrinogen and of the separated modified chains were determined. The molecular weights were 61000, 58000 and 51000 for Aα-, Bβ- and γ-chains respectively. Our results for the chains are in contrast with previous reports on rat fibrinogen [Bouma & Fuller (1975) J. Biol. Chem. 250, 4678–4683; Stemberger & Jilek (1976) Thromb. Res. 9, 657–660], in which no separation between Aα- and Bβ-chains was achieved on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis for 3h. Evidence is presented that this is probably due to Aα-chain degradation as a result of incomplete inhibition of proteolytic enzymes during the purification. Complete inhibition of proteolytic activities is essential in all steps of the present purification procedure.  相似文献   

14.
15.
The polymerization of laminins into a cell-associated network is a key process in basement membrane assembly. Network formation is mediated by the homologous short arm tips of the laminin heterotrimer, each consisting of a globular laminin N-terminal (LN) domain followed by a tandem of laminin-type epidermal growth factor-like (LEa) domains. How the short arms interact in the laminin network is unclear. Here, we have addressed this question by reconstituting laminin network nodes in solution and analyzing them by size exclusion chromatography and light scattering. Recombinant LN-LEa1–4 fragments of the laminin α1, α2, α5, β1, and γ1 chains were monomeric in solution. The β1 and γ1 fragments formed the only detectable binary complex and ternary complexes of 1:1:1 stoichiometry with all α chain fragments. Ternary complex formation required calcium and did not occur at 4 °C, like the polymerization of full-length laminins. Experiments with chimeric short arm fragments demonstrated that the LEa2–4 regions of the β1 and γ1 fragments are dispensable for ternary complex formation, and an engineered glycan in the β1 LEa1 domain was also tolerated. In contrast, mutation of Ser-68 in the β1 LN domain (corresponding to a Pierson syndrome mutation in the closely related β2 chain) abolished ternary complex formation. We conclude that authentic ternary nodes of the laminin network can be reconstituted for structure-function studies.  相似文献   

16.
17.
In the Polymerization of phenylalanine N-carboxyanhydride (NCA) in No2Oh initiated by MeNHBzl, L -,D -, and DL -NCA As were polymerized at the same rate, and no stereoselectivity was observed. When the same experiment was carried out in HCONEt2, however, L - and D -NCA were both polymerized at a rate which was about twice as large as that of DL -NCA. In this case, the polymerization is stereoselective, ascribable to a preferable reaction between the optical enantiomorphs of the terminal residue of the growing chain and the NCA of the same chirality. On the other hand, the polymerization initiated by SarNMe2 and MeNH(CH2)2CONMe2 were stereoselective in NO2Ph and HCONEt2, but they were not stereoselective in m-(MeO)2Ph. These findings indicate that the polymerizations initiated by a strong base in highly dipolar solvents are stereoselective. Apparently, the reaction between a chiral, cyclic terminal of growing chain and a chiral, cyclic activated NCA in the activated-NCA mechanism is highly stereoselective. In addition, from a kinetic investigation on on the copolymerization between L - and D -NCAs, the penultimate chiral centers were also suggested to contribute to the stereoselection. Stereoselection by the α-helical conformation of the growing chain and by a chiral, linear terminal amine have been considered so far, and the contribution from the present type of stereoselection must have been overlooked.  相似文献   

18.
Using enzymic digestion with pectinase, controlled Smith degradation and NMR-spectroscopy, some structural features of the hairy region of pectic polysaccharide termed silenan SV from the aerial part of campion Silene vulgaris (Moench) Garke (Oberna behen (L.) Ikonn) were elucidated.

Silenan was subjected to enzymic digestion with pectinase to furnish the polysaccharide fraction (SVP). The contained residues of -galacturonic acid (43%), arabinose, galactose and rhamnose as main constituents. The backbone of the hairy region of silenan was found to consist of -1,4-galactopyranosyl uronic acid and 2-O-glycosylated rhamnopyranose residues. The side chains contained linear regions of residues of -1,5-linked arabinofuranose and β-1,3-, β-1,4-linked galactopyranose. Silenan SV and its fragment SVP were subjected to Smith degradation to give fractions SVS and SVPS. These contain the residues of terminal and 2-substituted -arabinofuranose as well as residues of terminal, 3-, and 2,3-substituted β-galactopyranose. In addition, NMR-spectral data confirmed that the residues of -rhamnopyranose 2-O-glycosylated with the residues of -1,4-galactopyranosyl uronic acid of the backbone occurred in the core of SVPS and, therefore, in the backbone of silenan SV.

On the basis of data obtained, the hairy regions of silenan were suggested to contain mainly the linear chains of β-1,3-, β-1,4-galactopyranan and -1,5-arabinofuranan. The chains of -1,5-linked arabinofuranose, β-1,3- and β-1,4-linked galactopyranose were shown to be involved in the side chains of the hairy region having branching points at 2,3-substituted β-galactopyranose residues.  相似文献   


19.
Kewalramani G  Fink LN  Asadi F  Klip A 《PloS one》2011,6(10):e26947

Background

Macrophage-derived factors contribute to whole-body insulin resistance, partly by impinging on metabolically active tissues. As proof of principle for this interaction, conditioned medium from macrophages treated with palmitate (CM-PA) reduces insulin action and glucose uptake in muscle cells. However, the mechanism whereby CM-PA confers this negative response onto muscle cells remains unknown.

Methodology/Principal Findings

L6-GLUT4myc myoblasts were exposed for 24 h to palmitate-free conditioned medium from RAW 264.7 macrophages pre-treated with 0.5 mM palmitate for 6 h. This palmitate-free CM-PA, containing selective cytokines and chemokines, inhibited myoblast insulin-stimulated insulin receptor substrate 1 (IRS1) tyrosine phosphorylation, AS160 phosphorylation, GLUT4 translocation and glucose uptake. These effects were accompanied by a rise in c-Jun N-terminal kinase (JNK) activation, degradation of Inhibitor of κBα (IκBα), and elevated expression of proinflammatory cytokines in myoblasts. Notably, CM-PA caused IRS1 phosphorylation on Ser1101, and phosphorylation of novel PKCθ and ε. Co-incubation of myoblasts with CM-PA and the novel and conventional PKC inhibitor Gö6983 (but not with the conventional PKC inhibitor Gö6976) prevented PKCθ and ε activation, JNK phosphorylation, restored IκBα mass and reduced proinflammatory cytokine production. Gö6983 also restored insulin signalling and glucose uptake in myoblasts. Moreover, co-silencing both novel PKC θ and ε isoforms in myoblasts by RNA interference, but not their individual silencing, prevented the inflammatory response and restored insulin sensitivity to CM-PA-treated myoblasts.

Conclusions/Clinical Significance

The results suggest that the block in muscle insulin action caused by CM-PA is mediated by novel PKCθ and PKCε. This study re-establishes the participation of macrophages as a relay in the action of fatty acids on muscle cells, and further identifies PKCθ and PKCε as key elements in the inflammatory and insulin resistance responses of muscle cells to macrophage products. Furthermore, it portrays these PKC isoforms as potential targets for the treatment of fatty acid-induced, inflammation-linked insulin resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号